AB Calculus
5.2 Mean Value Theorem

THEOREM 3 Mean Value Theorem for Derivatives

If y = f(x) is continuous at every point of the closed interval [a, b] and differen-

tiable at every point of its interior (a, b), then there is at least one point c in (a, b) at
which
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Show that the function f(x) = x? satisfies the hypotheses of the Mean Value
Theorem on the interval on the given interval. Then find each value of ¢ in the
interval (a, b) that satisfies the equation

10 = [0S
f (C) = ba

a. f(x)=x% on [0,1] c. f(x)=In(x—1) on [2,4]

b. f(x)=x— 1] on [0,4] d. {Sinlx, i<r<1
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2. Explain why each of the following functions fails to satisfy the conditions of the Mean
Value Theorem on the interval [ 1,1].

a. f(x)=+x+1 b. B +3, <1
22+1, z>1

3. The interval a <x < bis given. Let 4 = (a,f(a)) and B = (b, f(b)). Write an equation for
the secant line 4B and a tangent line to f in the interval (a, b) thatis parallel to 4B .

fx)="Vx—1 1<x<3
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3. It took 20 sec for the temperature to rise from 0°F to 212°F when a thermometer was

taken out of a freezer and placed in boiling water. Explain why at some point in the
interval the mercury was rising at exactly 10.6°F .

4. A marathoner ran the New York City Marathon in 2.2h. Show that at least twice, the
marathoner was running at exactly 11mph.
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DEFINITIONS Increasing Function, Decreasing Function
Let f be a function defined on an interval / and let x, and x, be any two points in /.
1. fincreaseson/ if x,<x, = fl(x;) < f(x,).

2. fdecreaseson/ if x,<x, = flx)>f(x,).

COROLLARY 1 Increasing and Decreasing Functions
Let f be continuous on [a, #] and differentiable on (a, b).
1. If f'>0 ateach point of (a, b), then f increases on [a, b].

2. If f'< 0 ateach point of (a, b), then f decreases on [a, b].

5. Use analytic methods to determine (a) the local extrema, (b) the intervals on which the

function is increasing, and (c) the intervals on which the function is decreasing.

a. gx)=x>-x-12

b. k(x)

L
2

c. fx)=e 0¥
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d g(x)=x(x+8)

e. k(x)= =5

f. g(x)=2x+cosx
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COROLLARY 2 Functions with f' = 0 are Constant

If f'(x) =0 at each point of an interval /, then there is a constant C for which

f(x) =C forall xin L

COROLLARY 3 Functions with the Same Derivative Differ
by a Constant

If f'(x) = g'(x) ateach point of an interval /, then there is a constant C such that
f(x) =g(x) + C forall xin L

DEFINITION Antiderivative

A function F(x) is an antiderivative of a function f(x) if F'(x) = f(x) for all x in
the domain of f The process of finding an antiderivative is antidifferentiation.

6. Find all possible functions f* with the given derivative:

a. f(x)=sinx b. fx)===, x>1

7. Find the function with the given derivative whose graph passes through the point P.

a. fin=-L4 P12 b. fi(x)=2x+1—-cosx P(0,3)

4x4



