THEOREM 3 Mean Value Theorem for Derivatives

If $y=f(x)$ is continuous at every point of the closed interval $[a, b]$ and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Only says there is such a value, not where it is Conditions of Theorem cannot be relaxed!

$$
f(x)=|x|
$$

$$
f(x)=\operatorname{int} x
$$

AB Calculus
5.2 Mean Value Theorem

1. Show that the function $f(x)=x^{2}$ satisfies the hypotheses of the Mean Value Theorem on the interval on the given interval. Then find each value of c in the interval (a, b) that satisfies the equation

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

a. $f(x)=x^{\frac{2}{3}}$ on $[0,1]$
c. $f(x)=\ln (x-1)$ on $[2,4]$
b. $f(x)=|x-1|$ on $[0,4]$
d. $\quad f(x)= \begin{cases}\sin ^{-1} x, & -1 \leq x<1 \\ \frac{x}{2}+1, & 1 \leq x \leq 3\end{cases}$
2. Explain why each of the following functions fails to satisfy the conditions of the Mean Value Theorem on the interval $[-1,1]$.
a. $f(x)=\sqrt{x}+1$
b. $\begin{cases}x^{3}+3, & x<1 \\ x^{2}+1, & x \geq 1\end{cases}$
3. The interval $a \leq x \leq b$ is given. Let $A=(a, f(a))$ and $B=(b, f(b))$. Write an equation for the secant line $A B$ and a tangent line to f in the interval (a, b) that is parallel to $A B$.
$f(x)=\sqrt{x-1} \quad 1 \leq x \leq 3$
3. It took 20 sec for the temperature to rise from $0^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}$ when a thermometer was taken out of a freezer and placed in boiling water. Explain why at some point in the interval the mercury was rising at exactly $10.6^{\circ} \mathrm{F}$.
4. A marathoner ran the New York City Marathon in 2.2 h . Show that at least twice, the marathoner was running at exactly 11 mph .

DEFINITIONS Increasing Function, Decreasing Function

Let f be a function defined on an interval I and let x_{1} and x_{2} be any two points in I.

1. f increases on I if $x_{1}<x_{2} \quad \Rightarrow \quad f\left(x_{1}\right)<f\left(x_{2}\right)$.
2. f decreases on I if $x_{1}<x_{2} \quad \Rightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right)$.

COROLLARY 1 Increasing and Decreasing Functions

Let f be continuous on $[a, b]$ and differentiable on (a, b).

1. If $f^{\prime}>0$ at each point of (a, b), then f increases on $[a, b]$.
2. If $f^{\prime}<0$ at each point of (a, b), then f decreases on $[a, b]$.
3. Use analytic methods to determine (a) the local extrema, (b) the intervals on which the function is increasing, and (c) the intervals on which the function is decreasing.
a. $g(x)=x^{2}-x-12$
b. $\quad k(x)=\frac{1}{x^{2}}$
c. $f(x)=e^{-0.5 x}$
d. $g(x)=x^{\frac{1}{3}}(x+8)$
e. $k(x)=\frac{x}{x^{2}-4}$
f. $g(x)=2 x+\cos x$

COROLLARY 2 Functions with $\boldsymbol{f}^{\prime}=\mathbf{0}$ are Constant

If $f^{\prime}(x)=0$ at each point of an interval I, then there is a constant C for which $f(x)=C$ for all x in I.

COROLLARY 3 Functions with the Same Derivative Differ by a Constant

If $f^{\prime}(x)=g^{\prime}(x)$ at each point of an interval I, then there is a constant C such that $f(x)=g(x)+C$ for all x in I.

DEFINITION Antiderivative

A function $F(x)$ is an antiderivative of a function $f(x)$ if $F^{\prime}(x)=f(x)$ for all x in the domain of f. The process of finding an antiderivative is antidifferentiation.
6. Find all possible functions f with the given derivative:
a. $f^{\prime}(x)=\sin x$
b. $f^{\prime}(x)=\frac{1}{x-1}, x>1$
7. Find the function with the given derivative whose graph passes through the point P.
a. $f^{\prime}(x)=\frac{1}{4 x^{\frac{3}{4}}} \quad P(1,-2)$
b. $f^{\prime}(x)=2 x+1-\cos x \quad P(0,3)$

