DEFINITION Linearization

If f is differentiable at $x=a$, then the equation of the tangent line,

$$
L(x)=f(a)+f^{\prime}(a)(x-a),
$$

defines the linearization of \boldsymbol{f} at \boldsymbol{a}. The approximation $f(x) \approx L(x)$ is the standard linear approximation of f at a. The point $x=a$ is the center of the approximation.

1. Find the linearization of $f(x)=\sqrt{1+x}$ at $x=0$, and use it to approximate $\sqrt{1.02}$ without a calculator. Then use a calculator to determine the accuracy of the approximation.
2. Find the linearization of $f(x)=\cos x$ at $x=\frac{\pi}{2}$ and use it to approximate $\cos 1.75$ without a calculator. Then use a calculator to determine the accuracy of the approximation.

Approximating Binomial Powers:

$$
(1+x)^{k} \approx 1+k x
$$

Use this formula to find polynomials that will approximate the following functions for values of x close to 0 :
a. $\sqrt[3]{1-x}$
b. $\frac{1}{1-x}$
c. $\sqrt{1+5 x^{4}}$

AP ${ }^{\text {® }}$ CALCULUS AB 2002 SCORING GUIDELINES (Form B)

Question 2

The number of gallons, $P(t)$, of a pollutant in a lake changes at the rate $P^{\prime}(t)=1-3 e^{-0.2 \sqrt{t}}$ gallons per day, where t is measured in days. There are 50 gallons of the pollutant in the lake at time $t=0$. The lake is considered to be safe when it contains 40 gallons or less of pollutant.
(a) Is the amount of pollutant increasing at time $t=9$? Why or why not?
(b) For what value of t will the number of gallons of pollutant be at its minimum? Justify your answer.
answer.
(d) An investigator uses the tangent line approximation to $P(t)$ at $t=0$ as a model for the amount of pollutant in the lake. At what time t does this model predict that the lake becomes safe?

