

1. The function f is twice differentiable with $f(2)=1, f^{\prime}(2)=4$, and $f^{\prime \prime}(2)=3$. What is the value of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x=2$?
2. For the function $f, f^{\prime}(x)=2 x+1$ and $f(1)=4$. What is the approximation for $f(1.2)$ found by using the line tangent to the graph of f at $x=1$?
3. Let f be the function given by $f(x)=2 \cos x+1$. What is the approximation for $f(1.5)$ found by using the line tangent to the graph of f at $x=\frac{\pi}{2}$?
4. Let f be the function defined by $f(x)=\sqrt[3]{x}$. What is the approximation for $f(10)$ found by using the line tangent to the graph of f at the point $(8,2)$?
5. The twice-differentiable function W models the volume of water in a reservoir at time t, where $W(t)$ is measured in (GL) and t is measured in days. The table below gives values of $W(t)$ sampled at various times during the time interval $0 \leq t \leq 30$ days. At time $t=30$, the reservoir contains 125 gigaliters of water.

Use the tangent line approximation to W at time $t=30$ to predict the volume of water $W(t)$, in gigaliters, in the reservoir at time $t=32$. Show the computations that lead to your answer.

t (days)	0	10	22	30
$W^{\prime}(t)$ (GL per day)	0.6	0.7	1.0	0.5

6. Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$. Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?
