- 1) Given f(-3) = 4 and f'(-3) = 2, which of the following is the tangent line approximation of f(-3.1)?
- A) 3.8
- B) 3.9
- C) 4.0
- D) 4.1
- E) 4.2
- 2) Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f at x = 3 is used to find an approximation to a zero of f, that approximation is

- A) 0.4
- B) 0.5
- C) 2.6
- D) 3.4
- E) 5.5
- 3) Given the following data for a function *f*.

a) Estimate $f'(1.7)$ using average rate of	f
change.	

x	1.1	1.3	1.5	1.7	1.9	2.1
f(x)	12	15	21	23	24	25

- b) Write an equation for the tangent line to the graph of f at x = 1.7.
- c) Use your answer in b) to predict the value of f at x = 1.8.
- 4) For the function f, f'(x) = 2x + 1 and f(1) = 4. What is the approximation for f(0.8) found by using the line tangent to the graph of f at x = 1?

- A) 0.6
- B) 3.4
- C) 4.2
- D) 4.6
- E) 4.64

5) The relation $x^2y + 2xy^3 = 8$ defines y as a function of x near to (2, 1). Call this function y = f(x). Use the linear tangent approximation to find an approximate value for f(1.92).

6) The local linear approximating of a function f will always be greater than the function's value if, for all x in the interval containing the point of tangency,

(A)
$$f' < 0$$

(B)
$$f' > 0$$

(C)
$$f'' > 0$$

(D)
$$f'' < 0$$

(A)
$$f' < 0$$
 (B) $f' > 0$ (C) $f'' > 0$ (D) $f'' < 0$ (E) $f' = f'' = 0$

7) The solution of the differential equation $\frac{dy}{dx} = -\frac{x^2}{y}$ contains the points (3, -2). Approximate the value of v when x = 2.7.

- (A) -1.45 (B) -3.35 (C) -0.65 (D) -2.65 (E) -1.85

8)
$$\frac{dy}{dx} = \frac{x-y}{2y}$$
 and $y = -2$ when $x = 3$.

An estimate for the value of y when x = 3.2 using a linear tangent approximation is:

- (A) -2
- (B) -2.15 (C) -2.2 (D) -2.25 (E) -2.30

- 9) Find an approximate value for $x^3 3x^2 + 2x 1$ when x = 1.998 without the aid of a calculator. Determine if this is an under or an over approximation.