Triangle Inequality Theorem	The sum of the lengths of any two sides of a triangle must be greater than the length of the third side.	PQ + QR > PR $QR + PR > PQ$ $PR + PQ > QR$
--------------------------------	---	--

Is it possible to form a triangle with the given side lengths? If not, explain why not:
 a. 8 in., 15 in., 17 in.
 c. 15 yd, 16 yd, 30 yd

b. 6 m, 8 m, 14 m

d. 2 ft, 8 ft, 11 ft

*When the lengths of two sides of a triangle are known, the third side can be any length in a range of values. You can use the Triangle Inequality THeorem to determine the range of possible lengths for the third side.

- 2. Find the range for the measure of the third side of a triangle given the measure of two sides.
 - a. 4 ft, 8 ft b. 2.7 cm, 4.2 cm c. $\frac{1}{2}$ km, $3\frac{1}{4}$ km

3. If the measure of two sides of a triangle are 3 feet and 7 feet, which is the least possible whole number measure for the third side?

	a) 3 ft	b) 4ft	c) 5 ft	d) 10 ft
--	---------	--------	---------	----------

4. Which of the following could *not* be the value of *n*?

5. Determine the value of x:

a.

b.