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BC Calculus
6.1 Estimating with Finite Sums
6.2 Definite Integrals
6.3 Definite Integrals and Antiderivative

Riemann Sums
e RRAM (Right Rectangular Approximation Method)
® LRAM (Left Rectangular Approximation Method)
e MRAM (Midpoint Rectangular Approximation Method)

1. Aparticle starts at x = 0 and moves along the x-axis with velocity v(t) = £ + 2 for
time t > 0. Where is the particle at t = 5? Approximate the area under the curve
using five rectangles of equal width and heights determined by the midpoints of the

intervals.
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2. Use RRAM with n =5 to estimate the area of the region enclosed between the graph

of f and the x-axisfor a<x<b
f(x)=sinx,a=0,b=n
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Distance Traveled The table below shows the velocity of a
maodel train engine moving along a track for 10 sec. Estimate the
distance traveled by the engine, using 10 subintervals of length 1
with (a) left-endpoint values (LRAM) and (b) right-endpoint

values (RRAM),
Time Velocity Time Velocity
(sec) (in./sec) (sec) (in./sec)
0 0 6 11
1 12 7 6
2 22 8 2
3 10 9 6
4 ) 10 0
5 13

DLAAM = \(0+12+22+10 +S+B + U+ + 2+0)= &7

0 BBRAM=E V(2 + 22 nlo+5 #13 + N+ 240 a—o}: 27\

THEOREM 1 The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f is continuous on an in-
terval [a, b], then its definite integral over [a, b] exists.

The Definite Integral of a Continuous Function on [a, b]

Let f be continuous on [a, b], and let [a, b] be partitioned into n subintervals of
equal length Ax = (b — a)/n. Then the definite integral of f over [a, b] is given by

lim 3 fle)Ax,
k=1

where each ¢; is chosen arbitrarily in the k# subinterval.
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. b
lim > fledAx = f f(x) dx.
k=1 a

Upper limit of integration The function is the integrand,
. b x is the variable of integration.
Integral sign—___
f(x)dx
Lower limit of integration a When you find the value

_ __—of the integral, you have
Integral of f from a to b evaluated the integral.

DEFINITION Area Under a Curve (as a Definite Integral)

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the area
under the curve y = f(x) from a to & is the integral of f from a to b,

b
A= j Jx) dx.

b
Area = —J' F(x)dx when f(x)=<0.

b
f f(x) dx = (area above the x-axis) — (area below the x-axis).

THEOREM 2 The Integral of a Constant
If f(x) = c, where ¢ is a constant, on the interval [a, b], then

b b
ff(x)dx=fcdx=c(b—a).
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5. Use the graph of the integrand and area to evaluate the integral:
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6. Use areas to evaluate the integral:
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7. Find the points of discontinuity of the integrand on the intetval of integration, and
use area to evaluate the integral.
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Rules for Definite Integrals

o b
1. Order of Integration: f fX)dx =~ I Fx) dx A definition
b a

2. Zero: f fx)dx=0 Also a definition
b b
3. Constant Multiple: f kf(x)dx = kf f(x)dx  Any number k

) b
f —f(x) dx = —J. fxdx k=

b

b b
4. Sum and Difference: f (flx) £ g(x)) dx = f fx)dx * f g(x) dx

b [ c
5. Additivity: j f(x)dx + f f(x)dx = f Fix) dx
a b a

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on [a, b], then

b
minf-(b—-a)sff(x)dxsmaxf-(b—a).

b b
7. Domination: f(x) = g(x)on[a, b] = f f(x)dx = f g(x) dx

b
f(x)=0onla b] = ff(x)a'x =0 g=0
9. Supposethat f and g are continuous functions and that

}f(x)dx =3, ff(x)dx =8, _?g(x)dx =10
1 1 1

Find each integral below:
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10. Suppose that his continuous and that

fl h(r)dr = 0
A1

Find each integral.

a. fh(r)dr
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_? h(r)dr =5
1
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S nir)er - S hr)a r b. —!h(u)du

6.2 Definite Integrals

6.3 Definite Integrals and Antiderivative

11. Interpret the integrand as the rate of change of a quantity and evaluate the integral
using the antiderivative of the quantity:

= snVy - an0

=\

13

2
a. _[cosx dx
0
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SinXx ‘ e

b.
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2
fsec x dx
0
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DEFINITION Average {Mean) Value

If fis integrable on [a, b}, its average (mean) value on [a, b] is

av(f) =3

b
J’ f(x) dx.

compute the integral.
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12. Find the average value of the function on the interval, using antiderivatives to

y = secxtanx,
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Most Difficult First:

Pg. 278: #19
Pg. 292: #52, 54
Pg. 300: #40






