Riemann Sums

- RRAM (Right Rectangular Approximation Method)
- LRAM (Left Rectangular Approximation Method)
- MRAM (Midpoint Rectangular Approximation Method)
- 1. A particle starts at x = 0 and moves along the x-axis with velocity $v(t) = t^2 + 2$ for time $t \ge 0$. Where is the particle at t = 5? Approximate the area under the curve using five rectangles of equal width and heights determined by the midpoints of the intervals.

2. Use RRAM with n = 5 to estimate the area of the region enclosed between the graph of *f* and the x-axis for $a \le x \le b$

$$f(x) = \sin x, \ a = 0, \ b = \pi$$

Distance Traveled The table below shows the velocity of a model train engine moving along a track for 10 sec. Estimate the distance traveled by the engine, using 10 subintervals of length 1 with (a) left-endpoint values (LRAM) and (b) right-endpoint values (RRAM).

Time (sec)	Velocity (in./sec)	Time (sec)	Velocity (in./sec)
0	0	6	11
1	12	7	6
2	22	8	2
3	10	9	6
4	5	10	0
5	13		

THEOREM 1 The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f is continuous on an interval [a, b], then its definite integral over [a, b] exists.

The Definite Integral of a Continuous Function on [a, b]

Let f be continuous on [a, b], and let [a, b] be partitioned into n subintervals of equal length $\Delta x = (b - a)/n$. Then the definite integral of f over [a, b] is given by

$$\lim_{n\to\infty}\sum_{k=1}^n f(c_k)\Delta x,$$

where each c_k is chosen arbitrarily in the k^{th} subinterval.

3.

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x = \int_{a}^{b} f(x) \, dx.$$

DEFINITION Area Under a Curve (as a Definite Integral)

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the **area** under the curve y = f(x) from a to b is the integral of f from a to b,

$$A = \int_{a}^{b} f(x) \, dx.$$

Area =
$$-\int_{a}^{b} f(x) dx$$
 when $f(x) \le 0$.

 $\int_{a}^{b} f(x) dx = (\text{area above the } x \text{-axis}) - (\text{area below the } x \text{-axis}).$

THEOREM 2 The Integral of a Constant

If f(x) = c, where c is a constant, on the interval [a, b], then

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} c dx = c(b-a).$$

5. Use the graph of the integrand and area to evaluate the integral:

$$\int_{-2}^{2} (2 - |x|) \, dx$$

6. Use areas to evaluate the integral:

a.
$$\int_{0}^{b} 4x \, dx, \quad b > 0$$

b. $\int_{a}^{\sqrt{3}a} x \, dx, \quad a > 0$

7. Find the points of discontinuity of the integrand on the interval of integration, and use area to evaluate the integral.

$$\int_{-5}^{6} \frac{9-x^2}{x-3} dx$$

Table 5.3Rules for Definite Integrals1. Order of Integration:
$$\int_{a}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$
A definition2. Zero: $\int_{a}^{a} f(x) dx = 0$ Also a definition3. Constant Multiple: $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$ Any number k $\int_{a}^{b} -f(x) dx = -\int_{a}^{b} f(x) dx$ $k = -1$ 4. Sum and Difference: $\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$ 5. Additivity: $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$

6. *Max-Min Inequality:* If max f and min f are the maximum and minimum values of f on [a, b], then

$$\min f \cdot (b - a) \le \int_{a}^{b} f(x) \, dx \le \max f \cdot (b - a).$$
7. Domination: $f(x) \ge g(x)$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx$

$$f(x) \ge 0 \text{ on } [a, b] \Rightarrow \int_{a}^{b} f(x) \, dx \ge 0 \quad g = 0$$

9. Suppose that f and g are continuous functions and that

$$\int_{1}^{2} f(x)dx = -3, \quad \int_{1}^{5} f(x)dx = 8, \quad \int_{1}^{5} g(x)dx = 10$$

Find each integral below:

a.
$$\int_{2}^{2} g(x)dx$$

b. $\int_{5}^{1} g(x)dx$
c. $\int_{1}^{2} 3f(x)dx$
d. $\int_{2}^{5} f(x)dx$
e. $\int_{1}^{5} [f(x) - g(x)]dx$
f. $\int_{1}^{5} [4f(x) - g(x)]dx$

10. Suppose that *h* is continuous and that

$$\int_{-1}^{3} h(r)dr = 0 \quad \text{and} \quad \int_{-1}^{3} h(r)dr = 5$$

Find each integral.

- a. $\int_{1}^{3} h(r) dr$ b. $-\int_{3}^{1} h(u) du$
- 11. Interpret the integrand as the rate of change of a quantity and evaluate the integral using the antiderivative of the quantity:

a.
$$\int_{0}^{\frac{\pi}{2}} \cos x \, dx$$
 b. $\int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx$ c. $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$

DEFINITION Average (Mean) Value

If f is integrable on [a, b], its **average (mean) value** on [a, b] is

$$av(f) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

12. Find the average value of the function on the interval, using antiderivatives to compute the integral.

a.
$$y = \frac{1}{x}$$
, $[e, 2e]$
b. $y = \frac{1}{1+x^2}$, $[0, 1]$
c. $y = \sec x \tan x$,
 $[0, \frac{\pi}{3}]$

Most Difficult First:

Pg. 278: #19 Pg. 292: #52, 54 Pg. 300: #40