Riemann Sums

- RRAM (Right Rectangular Approximation Method)
- LRAM (Left Rectangular Approximation Method)
- MRAM (Midpoint Rectangular Approximation Method)

1. A particle starts at $x=0$ and moves along the x-axis with velocity $v(t)=t^{2}+2$ for time $t \geq 0$. Where is the particle at $t=5$? Approximate the area under the curve using five rectangles of equal width and heights determined by the midpoints of the intervals.
2. Use RRAM with $n=5$ to estimate the area of the region enclosed between the graph of f and the x -axis for $a \leq x \leq b$

$$
f(x)=\sin x, a=0, b=\pi
$$

3.

Distance Traveled The table below shows the velocity of a model train engine moving along a track for 10 sec . Estimate the distance traveled by the engine, using 10 subintervals of length 1 with (a) left-endpoint values (LRAM) and (b) right-endpoint values (RRAM).

Time (sec)	Velocity (in./sec)	Time (sec)	Velocity (in./sec)
0	0	6	11
1	12	7	6
2	22	8	2
3	10	9	6
4	5	10	0
5	13		

THEOREM 1 The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f is continuous on an interval $[a, b]$, then its definite integral over $[a, b]$ exists.

The Definite Integral of a Continuous Function on [$\boldsymbol{a}, \boldsymbol{b}$]

Let f be continuous on $[a, b]$, and let $[a, b]$ be partitioned into n subintervals of equal length $\Delta x=(b-a) / n$. Then the definite integral of f over $[a, b]$ is given by

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x
$$

where each c_{k} is chosen arbitrarily in the $k^{\text {th }}$ subinterval.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

DEFINITION Area Under a Curve (as a Definite Integral)

If $y=f(x)$ is nonnegative and integrable over a closed interval $[a, b]$, then the area under the curve $\boldsymbol{y}=f(\boldsymbol{x})$ from \boldsymbol{a} to \boldsymbol{b} is the integral of f from a to b,

$$
A=\int_{a}^{b} f(x) d x
$$

$$
\text { Area }=-\int_{a}^{b} f(x) d x \quad \text { when } \quad f(x) \leq 0
$$

$$
\int_{a}^{b} f(x) d x=\text { (area above the } x \text {-axis) - (area below the } x \text {-axis). }
$$

THEOREM 2 The Integral of a Constant

If $f(x)=c$, where c is a constant, on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} c d x=c(b-a)
$$

5. Use the graph of the integrand and area to evaluate the integral:

$$
\int_{-2}^{2}(2-|x|) d x
$$

6. Use areas to evaluate the integral:
a. $\int_{0}^{b} 4 x d x, \quad b>0$
b. $\int_{a}^{\sqrt{3} a} x d x, \quad a>0$
7. Find the points of discontinuity of the integrand on the interval of integration, and use area to evaluate the integral.

$$
\int_{-5}^{6} \frac{9-x^{2}}{x-3} d x
$$

Table 5.3 Rules for Definite Integrals

1. Order of Integration: $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \quad \mathrm{~A}$ definition
2. Zero:

$$
\int_{a}^{a} f(x) d x=0 \quad \text { Also a definition }
$$

3. Constant Multiple: $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \quad$ Any number k

$$
\int_{a}^{b}-f(x) d x=-\int_{a}^{b} f(x) d x \quad k=-1
$$

4. Sum and Difference: $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. Additivity: $\quad \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
6. Max-Min Inequality: If $\max f$ and $\min f$ are the maximum and minimum values of f on $[a, b]$, then

$$
\min f \cdot(b-a) \leq \int_{a}^{b} f(x) d x \leq \max f \cdot(b-a)
$$

7. Domination: $f(x) \geq g(x)$ on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$

$$
f(x) \geq 0 \text { on }[a, b] \Rightarrow \int_{a}^{b} f(x) d x \geq 0 \quad g=0
$$

9. Suppose that f and g are continuous functions and that

$$
\int_{1}^{2} f(x) d x=-3, \quad \int_{1}^{5} f(x) d x=8, \quad \int_{1}^{5} g(x) d x=10
$$

Find each integral below:
a. $\int_{2}^{2} g(x) d x$
b. $\int_{5}^{1} g(x) d x$
c. $\int_{1}^{2} 3 f(x) d x$
d. $\int_{2}^{5} f(x) d x$
e. $\int_{1}^{5}[f(x)-g(x)] d x$
f. $\int_{1}^{5}[4 f(x)-g(x)] d x$
10. Suppose that h is continuous and that

$$
\int_{-1}^{1} h(r) d r=0 \quad \text { and } \quad \int_{-1}^{3} h(r) d r=5
$$

Find each integral.
a. $\int_{1}^{3} h(r) d r$
b. $-\int_{3}^{1} h(u) d u$
11. Interpret the integrand as the rate of change of a quantity and evaluate the integral using the antiderivative of the quantity:
a. $\int_{0}^{\frac{\pi}{2}} \cos x d x$
b. $\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x$
c. $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} d x$

DEFINITION Average (Mean) Value

If f is integrable on $[a, b]$, its average (mean) value on $[a, b]$ is

$$
a v(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

12. Find the average value of the function on the interval, using antiderivatives to compute the integral.
a. $y=\frac{1}{x}, \quad[e, 2 e]$
b. $y=\frac{1}{1+x^{2}}, \quad[0,1]$
c. $y=\sec x \tan x$,

$$
\left[0, \frac{\pi}{3}\right]
$$

Pg. 278: \#19
Pg. 292: \#52, 54
Pg. 300: \#40

