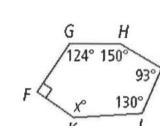
Polygon:

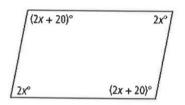
Diagonal:

Investigate!

Polygon	Number of Sides	Number of Triangles (construct all possible diagonals from one vertex)	Sum of Interior Angle Measure
Triangle			
Quadrilateral			
Pentagon			
Hexagon	6	4 Triangles	4(180) = 720
n-gon			

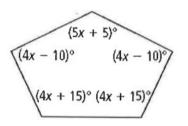

Polygon Interior Angle Sum Theorem	The sum of the interior angle measure of an n -sided convex polygon is $(n-2) \cdot 180$	
---------------------------------------	--	--

Recall:

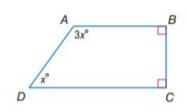

Number of Sides	Polygon
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
n	

- 1. Find the sum of the measure of the interior angles of a convex heptagon.
- 2. Find the measure of ONE angle in each regular polygon below:
 - a. Regular 18-gon b. Regular 24-gon c. Regular 15-gon

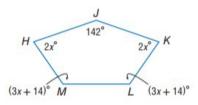
3. Find the measure of each interior angle of:



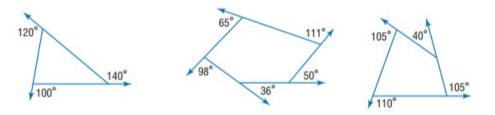
c.



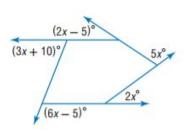
b.


a.

d.


e.

- 4. The measure of an interior angle of a regular polygon is 135. Find the number of sides in the polygon.
- 5. The measure of an interior angle of a regular polygon is 144. Find the number of sides in the polygon.


Investigate!

Does a relationship exist between the number of sides of a convex polygon and the sum of its exterior angle measures?

Polygon Exterior Angle Sum Theorem	The sum of the exterior angle measure of a convex polygon, one angle at each vertex, is 360.	
---------------------------------------	---	--

- 6. Find the value of *x* in the diagram:
 - a.

139° 6x° 9x°

- 7. Find the measure of an exterior angle of each regular polygon:
 - a. 80-gon b. 20-gon c. 19-gon

b.