1. Suppose from the 2 nd to 4 th hour of your road trip you travel with cruise control set to exactly 70 mph for that two hour stertch. How far have you traveled during this time?
2. Sktech a graph modeling the situation in the above example. Geometrically, how can we indicate the total distance traveled?

Now what happens if the distance is not constant?

Riemann Sums

- RRAM (Right Rectangular Approximation Method)
- Use the right endpoint of each subinterval to determine the height of each rectangle.
- LRAM (Left Rectangular Approximation Method)
- Use the left endpoint of each subinterval to determine the height of each rectangle.
- MRAM (Midpoint Rectangular Approximation Method)
- Use the middle of each subinterval to determine the height of each rectangle.
*In each case the height of the rectangle is the function value at the selected x-value.

Steps:

- Divide (or partition) the interval into n subintervals
- The patition does not have to be equal length, but will be for now
- Create n rectangles whose base equals the width of each subinterval and whose height is determined by the function value at the left endpoint, right endpoint, or midpoint of the subinterval.
- Find the area of n rectangles and add them together.

3. A particle starts at $x=0$ and moves along the x-axis with velocity $v(t)=t^{2}+1$ for time $t \geq 0$. Where is the particle at $t=5$? Approximate the area under the curve using five rectangles of equal width and heights determined by the midpoints of the intervals.
4. Use RRAM with $n=5$ to estimate the area of the region enclosed between the graph of f and the x-axis for $a \leq x \leq b$

$$
f(x)=\sin x, a=0, b=\pi
$$

5. Use 4 rectangles to approximate the area under the graph of $y=x^{2}-2 x+2$ from $x=1$ to $x=3$. Use LRAM.
6. Use 4 rectangles to approximate the area under the graph of $y=x^{2}-2 x+2$ from $x=1$ to $x=3$. Use RRAM.
7. Use 4 rectangles to approximate the area under the graph of $y=x^{2}-2 x+2$ from $x=1$ to $x=3$. Use MRAM.
8. The table below shows the velocity of a model train engine moving along a track for 10 sec . Estimate the distance traveled by the engine, using 10 subintervals of length 1 with (a) left-endpoint values (LRAM) and (b) right-endpoint values (RRAM)

Time (sec)	Velocity $(\mathrm{in} . / \mathrm{sec})$	Time (sec)	Velocity $(\mathrm{in} . / \mathrm{sec})$
0	0	6	11
1	12	7	6
2	22	8	2
3	10	9	6
4	5	10	0
5	13		

9. You and a companion are driving along a twisty stretch of dirt road in a car whose speedometer works but whose odometer (mileage counter) is broken. To find out how long this particular stretch of road is, you record the car's velocity at 10-sec intervals, with the results shown in the table below. (The velocity was converted from mi / h to $\mathrm{ft} / \mathrm{sec}$ using $30 \mathrm{mi} / \mathrm{h}=44 \mathrm{ft} / \mathrm{sec}$.) Estimate the length of the road by averaging the LRAM and RRAm sums.

Time (sec)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Time (sec)	Velocity $(\mathrm{ft} / \mathrm{sec})$
0	0	70	15
10	44	80	22
20	15	90	35
30	35	100	44
40	30	110	30
50	44	120	35
60	35		

Overestimate or Underestimate:

RRAM
LRAM
MRAM

