

Width of each rectangle $=$ \qquad
*each rectangle does not need to have the same width, but we will assume it for this

Read as "the integral of f of x from a to b "

AB Calculus
6.2 Definite Integrals
5. The interval $[-1,3]$ is partitioned into n subintervals of equal length $\Delta x=\frac{4}{n}$. Let m_{k} denote the midpoint of the $k^{\text {th }}$ subinterval. Express the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3\left(m_{k}\right)^{2}-2 m_{k}+5\right) \Delta x
$$

as an integral.
5. The function f is given by $f(x)=\ln x$. The graph of f is shown below. Which of the following is equal to the area of the shaded region?
(A) $\lim _{x \rightarrow \infty} \sum_{k=1}^{n}\left(1+\ln \left(\frac{3 k}{n}\right)\right) \frac{3}{n}$
(B) $\lim _{x \rightarrow \infty} \sum_{k=1}^{n} \ln \left(1+\left(\frac{3 k}{n}\right)\right) \frac{3}{n}$

(C) $\lim _{x \rightarrow \infty} \sum_{k=1}^{n} \ln \left(\frac{4}{n}\right)\left(1+\frac{4 k}{n}\right)$
(D) $\lim _{x \rightarrow \infty} \sum_{k=1}^{n} \ln \left(1+\frac{4 k}{n}\right)\left(\frac{4}{n}\right)$
6. The closed interval $[a, b]$ is partitioned into n equal sub intervals each of width Δx, by the numbers $x_{0}, x_{1}, \ldots, x_{n}$ where $a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b$. Express $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{x_{i}} \Delta x$ as an integral.
7. For a certain continuous function, f, the right Riemann sum approximation of $\int_{0}^{2} f(x) d x$ with n subintervals of equal length is $\frac{2(n+1)(3 n+2)}{n^{2}}$ for all n. What is the value of $\int_{0}^{2} f(x) d x$?

8. Which of the following limits is equal to $\int_{2}^{5} x^{2} d x$

$$
\begin{array}{ll}
\text { (A) } \lim _{x \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{k}{n}\right)^{2} \frac{1}{n} & \text { (C) } \lim _{x \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{3 k}{n}\right)^{2} \frac{1}{n} \\
\text { (B) } \lim _{x \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{k}{n}\right)^{2} \frac{3}{n} & \text { (D) } \lim _{x \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{3 k}{n}\right)^{2} \frac{3}{n}
\end{array}
$$

9. The continuous function f is decreasing for all x. Selected values of f are given in the table below, where a is a constant with $0<a<3$. Let R be the right Riemann sum approximation for $\int_{0}^{7 a} f(x) d x$ using four subintervals indicated by the data in the table. Which of the following statements is true?

x	0	a^{2}	$3 a$	$6 a$	$7 a$
$f(x)$	1	-1	-3	-7	-9

(A) $R=\left(a^{2}-0\right) \cdot 1+\left(3 a-a^{2}\right) \cdot(-1)+(6 a-3 a) \cdot(-3)+(7 a-6 a) \cdot(-7)$ and is an underestimate for $\int_{0}^{7 a} f(x) d x$.
(B) $R=\left(a^{2}-0\right) \cdot 1+\left(3 a-a^{2}\right) \cdot(-1)+(6 a-3 a) \cdot(-3)+(7 a-6 a) \cdot(-7)$ and is an overestimate for $\int_{0}^{7 a} f(x) d x$.
(C) $R=\left(a^{2}-0\right) \cdot(-1)+\left(3 a-a^{2}\right) \cdot(-3)+(6 a-3 a) \cdot(-7)+(7 a-6 a) \cdot(-9)$ and is an underestimate for $\int_{0}^{7 a} f(x) d x$.
(D) $R=\left(a^{2}-0\right) \cdot(-1)+\left(3 a-a^{2}\right) \cdot(-3)+(6 a-3 a) \cdot(-7)+(7 a-6 a) \cdot(-9)$ and is an overestimate for $\int_{0}^{7 a} f(x) d x$.
10. Which of the following is a left Riemann sum approximation of $\int_{2}^{8} \cos \left(x^{2}\right) d x$ with n subintervals of equal length?
(A) $\sum_{k=1}^{n}\left(\cos \left(2+\frac{k-1}{n}\right)^{2}\right) \frac{1}{n}$
(B) $\sum_{k=1}^{n}\left(\cos \left(\frac{6 k}{n}\right)^{2}\right) \frac{6}{n}$
(C) $\sum_{k=1}^{n}\left(\cos \left(2+\frac{6(k-1)}{n}\right)^{2}\right) \frac{6}{n}$
(D) $\sum_{k=1}^{n}\left(\cos \left(2+\frac{6 k}{n}\right)^{2}\right) \frac{6}{n}$

Area Under a Curve

If $y=f(x)$ is nonnegative and integrable over a closed interval $[a, b]$, then the area under the curve $y=f(x)$ from a to b is the integral of f from a to b,

$A=\int_{a}^{b} f(x) d x$		
When $f(x) \leq 0$ Area $=\ldots$		
$\int_{a}^{b} f(x) d x=\ldots$		

11. Evaluate the integral below:
a. $\int_{3}^{7}(-20) d x$
12. Use the graph of the integrand and area to evaluate the integral:
a. $\int_{-1}^{1}(1-|x|) d x$
b. $\int_{\frac{1}{2}}^{\frac{3}{2}}(-2 x+4) d x$
c. $\int_{-4}^{0} \sqrt{16-x^{2}} d x$
13. Use areas to evaluate the integral:
a. $\int_{0}^{h} 4 x d x, \quad b>0$
b. $\int_{a}^{\sqrt{3} a} x d x, \quad a>0$
14. Find the points of discontinuity of the integrand on the interval of integration, and use area to evaluate the integral.
a. $\int_{-5}^{6} \frac{9-x^{2}}{x-3} d x$
