Circular Functions

Circular Functions

The following functions are defined for any real number s represented by a directed arc on the unit circle.

$$\sin s = y$$
 $\cos s = x$ $\tan s = \frac{y}{x} (x \neq 0)$

$$\csc s = \frac{1}{y} (y \neq 0) \qquad \sec s = \frac{1}{x} (x \neq 0) \qquad \cot s = \frac{x}{y} (y \neq 0)$$

The unit circle $x^2 + y^2 = 1$

The unit circle is symmetric with respect to the	, the	, and the
The unit circle is symmetric with respect to the If a point (a, b) lies on the unit circle, and Furthermore, each of these points equal magnitude.	has a,	of
Because $\cos s = x$ and $\sin s = y$, we can replace x and y $x^2 + y^2 = 1$ and obtain the following.	y in the equation of the	unit circle,
$\cos^2 s + \sin^2 s =$	1	
Domains of the Circular Functions The domains of the circular functions are as follows.		
Sine and Cosine Functions: $(-\infty, \infty)$		
Tangent and Secant Functions:		
$\left\{s \mid s \neq \left(2n+1\right) \frac{\pi}{2}, \text{ where } n \text{ is} \right\}$	is any integer	
Cotangent and Cosecant Functions:		
$\{s \mid s \neq n\pi, \text{ where } n \text{ is an}\}$	ıy integer}	
1. Find the following: a. $\sin(-3\pi)$	d. $\cos(\frac{4\pi}{3})$	
	a. cos(3)	
$h = \cot(3\pi)$	$a = \sin(7\pi)$	
b. $\cot(\frac{3\pi}{2})$	e. $\sin(\frac{7\pi}{6})$	
· (11π)	$c = \sqrt{-0\pi}$	
$c. \sin(\frac{11\pi}{6})$	f. $\tan(\frac{-9\pi}{4})$	

2.	Find a calculator approxim	nation for each of the following:
	(a) sin 3.42	(b) tan 0.8234

(c) $\sec 5.6041$ (d) $\csc (-2.7335)$

Remember, when used to find a circular function value of a real number, the calculator must be in _____ mode.

Determining a Number with a Given Circular Function Value

The keys marked sin⁻¹, cos⁻¹, and tan⁻¹ do not represent reciprocal functions. They enable us to find inverse function values.

- 3. Find each value as specified:
 - (a) Approximate the value of s in the interval $\left[0, \frac{\pi}{2}\right]$ if $\cos s = 0.3210$.
 - **(b)** Find the exact value of s in the interval $\left[\frac{3\pi}{2}, 2\pi\right]$ if $\tan s = -\frac{\sqrt{3}}{3}$.

Linear and Angular Speed

Suppose that point P moves at a constant speed along a circle of radius r and center O. The measure of how fast the position of P is changing is the **linear speed**. If v represents linear speed, then

speed =
$$\frac{\text{distance}}{\text{time}}$$
, or $v = \frac{s}{t}$,

where s is the length of the arc traced by point P at time t.

As point P in the figure moves along the circle, ray OP rotates around the origin. Because ray OP is the terminal side of angle POB, the measure of the angle changes as P moves along the circle. The measure of how fast angle POB is changing is its **angular speed**. Angular speed, symbolized ω , is given as

$$\omega = \frac{\theta}{t}$$
, where θ is in radians.

Here θ is the measure of angle *POB* at time *t*. As with earlier formulas in this chapter, θ must be measured in _____, with ω expressed in _____

Formulas for Angular and Linear Speed

Angular Speed ω	Linear Speed v
ω=	v =
(ω in radians per unit time t , θ in radians)	v =
	v =

- 4. Suppose that point P is on a circle with radius 15 in., and ray OP is rotating with angular speed $\frac{\pi}{12}$ radian per sec.
 - (a) Find the angle generated by P in 10 sec.

(b) Find the distance traveled by P along the circle in 10 sec.	
(c) Find the linear speed of P in inches per second.	
A belt runs a pulley of radius 5 in. at 120 revolutions per min.	
(a) Find the angular speed of the pulley in radians per second.	5 in.

(b) Find the linear speed of the belt in inches per second.

5.