Circular Functions

Circular Functions

The following functions are defined for any real number s represented by a directed arc on the unit circle.

$$
\begin{array}{lll}
\sin s=y & \cos s=x & \tan s=\frac{y}{x}(x \neq 0) \\
\csc s=\frac{1}{y}(y \neq 0) & \sec s=\frac{1}{x}(x \neq 0) & \cot s=\frac{x}{y}(y \neq 0)
\end{array}
$$

The unit circle $x^{2}+y^{2}=1$

6.2 The Unit Circle And Circular Functions
 Honors Algebra 2 with Trig

The unit circle is symmetric with respect to the \qquad , the \qquad , and the
\qquad . If a point (a, b) lies on the unit circle, so do \qquad , \qquad of and \qquad Furthermore, each of these points has a \qquad equal magnitude.

Because $\cos s=x$ and $\sin s=y$, we can replace x and y in the equation of the unit circle, $x^{2}+y^{2}=1$ and obtain the following.

$$
\cos ^{2} s+\sin ^{2} s=1
$$

Domains of the Circular Functions

The domains of the circular functions are as follows.
Sine and Cosine Functions: $\quad(-\infty, \infty)$

Tangent and Secant Functions:

$$
\left\{s \left\lvert\, s \neq(2 n+1) \frac{\pi}{2}\right., \text { where } n \text { is any integer }\right\}
$$

Cotangent and Cosecant Functions:

$$
\{s \mid s \neq n \pi, \text { where } n \text { is any integer }\}
$$

1. Find the following:
a. $\sin (-3 \pi)$
b. $\quad \cot \left(\frac{3 \pi}{2}\right)$
c. $\sin \left(\frac{11 \pi}{6}\right)$
d. $\cos \left(\frac{4 \pi}{3}\right)$
e. $\sin \left(\frac{7 \pi}{6}\right)$
f. $\tan \left(\frac{-9 \pi}{4}\right)$
2. Find a calculator approximation for each of the following:
(a) $\sin 3.42$
(b) $\tan 0.8234$
(c) $\sec 5.6041$
(d) $\csc (-2.7335)$

Remember, when used to find a circular function value of a real number, the calculator must be in \qquad mode.

Determining a Number with a Given Circular Function Value

The keys marked $\sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$ do not represent reciprocal functions. They enable us to find inverse function values.
3. Find each value as specified:
(a) Approximate the value of s in the interval $\left[0, \frac{\pi}{2}\right]$ if $\cos s=0.3210$.
(b) Find the exact value of s in the interval $\left[\frac{3 \pi}{2}, 2 \pi\right]$ if $\tan s=-\frac{\sqrt{3}}{3}$.

6.2 The Unit Circle And Circular Functions
 Honors Algebra 2 with Trig

Linear and Angular Speed

Suppose that point P moves at a constant speed along a circle of radius r and center O. The measure of how fast the position of P is changing is the linear speed. If v represents linear speed, then

$$
\text { speed }=\frac{\text { distance }}{\text { time }} \text {, or } \boldsymbol{v}=\frac{\boldsymbol{s}}{\boldsymbol{t}} \text {, }
$$

where s is the length of the arc traced by point P at time t.

As point P in the figure moves along the circle, ray $O P$ rotates around the origin. Because ray $O P$ is the terminal side of angle $P O B$, the measure of the angle changes as P moves along the circle. The measure of how fast angle $P O B$ is changing is its angular speed. Angular speed, symbolized ω, is given as

$$
\omega=\frac{\theta}{t}, \quad \text { where } \theta \text { is in radians. }
$$

Here θ is the measure of angle $P O B$ at time t. As with earlier formulas in this chapter, $\boldsymbol{\theta}$ must be measured in \qquad , with ω expressed in
\qquad .

Formulas for Angular and Linear Speed	
Angular Speed ω	Linear Speed \boldsymbol{v}
$\omega=-$	$\boldsymbol{v}=-$
(ω in radians per unit time t, θ in radians $)$	$\boldsymbol{v}=-$
	$\boldsymbol{v}=$

4. Suppose that point P is on a circle with radius 15 in ., and ray OP is rotating with angular speed $\frac{\pi}{12}$ radian per sec.
(a) Find the angle generated by P in 10 sec .
(b) Find the distance traveled by P along the circle in 10 sec .
(c) Find the linear speed of P in inches per second.
5. A belt runs a pulley of radius 5 in . at 120 revolutions per min.
(a) Find the angular speed of the pulley in radians per second.

(b) Find the linear speed of the belt in inches per second.
