Table 5.3 Rules for Definite Integrals

1. Order of Integration: $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \quad$ A definition
2. Zero: $\quad \int_{a}^{a} f(x) d x=0 \quad$ Also a definition
3. Constant Multiple: $\quad \int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \quad$ Any number k

$$
\int_{a}^{b}-f(x) d x=-\int_{a}^{b} f(x) d x \quad k=-1
$$

4. Sum and Difference: $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. Additivity: $\quad \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
6. Suppose that f and g are continuous functions and that

$$
\int_{1}^{2} f(x) d x=-4, \quad \int_{1}^{5} f(x) d x=6, \quad \int_{1}^{5} g(x) d x=8
$$

Find each integral below:
a. $\int_{2}^{2} g(x) d x$
b. $\int_{5}^{1} g(x) d x$
c. $\int_{1}^{2} 3 f(x) d x$
d. $\int_{2}^{5} f(x) d x$
e. $\int_{1}^{5}[f(x)-g(x)] d x$
f. $\int_{1}^{5}[4 f(x)-g(x)] d x$
2. The function f is defined by $f(x)=\left\{\begin{array}{ll}2 & \text { for } x<3 \\ x-1 & \text { for } x \geq 3 .\end{array}\right.$ What is the value of $\int_{1}^{5} f(x) d x$?

6
E
3. Let f and g have continuous first and second derivatives everywhere. If $f(x) \leq g(x)$ for all real x, which of the following must be true?
I. $\quad f^{\prime}(x) \leq g^{\prime}(x)$ for all real x.
II. $f^{\prime \prime}(x) \leq g^{\prime \prime}(x)$ for all real x.
III. $\int_{0}^{1} f(x) d x \leq \int_{0}^{1} g(x) d x$
(A) none

(B) I only $1, I I$, and III
4. The function f is defined as $\quad f(x)=\left\{\begin{array}{ll}\frac{|x|}{x} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{array}\right.$ The value $\int_{-5}^{3} 5 f(x) d x$ is:
(A) -2
(B) 2

C
8
(D) nonexistent
5. Interpret the integrand as the rate of change of a quantity and evaluate the integral using the antiderivative of the quantity:
a. $\int_{0}^{\frac{\pi}{2}} \cos x d x$
b. $\int_{0}^{\frac{\pi}{2}} \sec ^{2} x d x$
c. $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} d x$
6.3 Definite Integrals and Antiderivative
d. $\int_{-1}^{2} 3 x^{2} d x$
e. $\int_{3}^{7} 8 d x$
f. $\int_{1}^{4}-x^{-2} d x$
5. If f is a linear function and $0<a<b$, then $\int_{a}^{b} f^{\prime \prime}(x) d x=$

$$
\text { (C) } \frac{a b}{2}
$$

(A) 0

B 1
(E) $\frac{b^{2}-a^{2}}{2}$

DEFINITION Average (Mean) Value

If f is integrable on $[a, b]$, its average (mean) value on $[a, b]$ is

$$
a v(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

6. Find the average value of the function on the interval, using antiderivatives to compute the integral.
a. $y=\frac{1}{x}, \quad[e, 2 e]$
b. $y=\frac{1}{1+x^{2}}, \quad[0,1]$
c. $y=\sec x \tan x$,
$\left[0, \frac{\pi}{3}\right]$
