Theorems

Conditions for Parallelograms

6.9 If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
Abbreviation If both pairs of opp. sides are \cong, then quad. is $a \square$.
Example If $\overline{A B} \cong \overline{D C}$ and $\overline{A D} \cong \overline{B C}$, then $A B C D$ is a parallelogram.
6.10 If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
Abbreviation If both pairs of opp. $\angle s$ are \cong, then quad. is $a \square$.
Example If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then $A B C D$
 is a parallelogram.
6.11 If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
Abbreviation If diag. bisect each other, then quad. is $a \square$.
Example If $\overline{A C}$ and $\overline{D B}$ bisect each other, then $A B C D$ is a parallelogram.
6.12 If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram.
Abbreviation If one pair of opp. sides is \cong and ||, then the quad. is $a \square$.
Example If $\overline{A B} \| \overline{D C}$ and $\overline{A B} \cong \overline{D C}$, then $A B C D$ is a parallelogram.

1. Determine whether the quadrilateral is a parallelogram. Justify your answer.
a.

b.

c.

d.

2. Find the variables in the diagrams below so that each quadrilateral is a parallelogram.
a.

b.

c.

d.

e.

3. Show that $A(2,-1), B(1,3), C(6,5)$, and $D(7,1)$ are the vertices of a parallelogram.

Method 1: Show that the opposite sides have the same

Method 2: Show that the opposite sides have the same \qquad
\qquad and \qquad
4. Graph quadrilateral KLMN with vertices $K(2,3), L(8,4), M(7,-2)$, and $N(1,-3)$. Determine whether the quadrilateral is a parallelogram.

5.

Given: $\square \mathrm{WXYZ}$
Prove: $\triangle W O X \cong \triangle Y O Z$

Statements	Justifications		
1. $\square \mathrm{WXYZ}$	1.		
2. $\angle W O X \cong \angle Z O Y$	2.		
3. $\overline{X W} \\| \overline{Y Z}$	4.		
4. $\angle W X O \cong \angle Y Z O$	5.		
5. $\overline{W X} \cong \overline{\overline{Y Z}}$	6.		

4.

Given: $\quad \triangle X Y W \cong \Delta Z W Y$
Prove: XYZW is a parallelogram.

Statements Justifications

1. $\triangle \mathrm{XYW} \cong \triangle \mathrm{ZWY}$
2. $\overline{X Y} \cong \overline{W Z}$
3. $\overline{X W} \cong Y Z$
4. XYZW is a parallelogram
5. Given
6. \qquad
7. \qquad
8. \qquad
9.

Given: $\quad \triangle \mathrm{XYW} \cong \Delta \mathrm{ZWY}$
Prove: XYZW is a parallelogram.

Statements

1. $\triangle \mathrm{XYW} \cong \triangle \mathrm{ZWY}$
2. Given
3. $\measuredangle X Y W \cong \Varangle Y W Z$
4. \qquad
5. $\overline{X Y} \| \overline{W Z}$
6. \qquad
7. $\overline{X Y} \cong \overline{W Z}$
8. \qquad
9. XYZW is a parallelogram
10. \qquad
