Theorems	Conditions for Parallelograms	FOR Your FOLDABLE
	opposite sides of a quadrilateral are the quadrilateral is a parallelogram.	A
Abbreviation	If both pairs of opp. sides are \cong , then quad. is a \square .	+ +
Example	If $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$, then $ABCD$ is a parallelogram.	D C
	f opposite angles of a quadrilateral are n the quadrilateral is a parallelogram.	AB
Abbreviation	If both pairs of opp. $\angle s$ are \cong , then quad. is a \square .	
Example	If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then $ABCD$ is a parallelogram.	D C
6.11 If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.		A B
Abbreviation	If diag. bisect each other, then quad. is a \square .	
Example	If \overline{AC} and \overline{DB} bisect each other, then <i>ABCD</i> is a parallelogram.	D C
	opposite sides of a quadrilateral is both ongruent, then the quadrilateral is a	A B
Abbreviation	If one pair of opp. sides is \cong and $ $, then the quad. is a \square .	
Example	If $\overline{AB} \mid\mid \overline{DC}$ and $\overline{AB} \cong \overline{DC}$, then $ABCD$ is a parallelogram.	

1. Determine whether the quadrilateral is a parallelogram. Justify your answer.

a.

b.

c.

d.

2. Find the variables in the diagrams below so that each quadrilateral is a parallelogram.

a.

c.

b.

d.

3. Show that A(2,-1), B(1,3), C(6,5), and D(7,1) are the vertices of a parallelogram.

Method 1: Show that the opposite sides have the same

Method 2: Show that the opposite sides have the same _____

4. Graph quadrilateral KLMN with vertices K(2,3), L(8,4), M(7,-2), and N(1,-3). Determine whether the quadrilateral is a parallelogram.

5.

Given: WXYZ

Prove: $\triangle WOX \cong \triangle YOZ$

Statements	Justifications	
1. WXYZ	1.	
2. ∠ <i>WOX</i> ≅ ∠ <i>ZOY</i>	2.	
3. $\overline{XW} \parallel \overline{YZ}$	3.	
 ∠WXO≅ ∠YZO 	4.	
5. $\overline{WX} \cong \overline{YZ}$	5.	
6. $\Delta WOX \cong \Delta YOZ$	6.	

4.

Given: $\Delta XYW \cong \Delta ZWY$

Prove: XYZW is a parallelogram.

Statements	Justifications	
1. $\Delta XYW \cong \Delta ZWY$	1. Given	
2. $\overline{XY} \cong \overline{WZ}$	2	
3. $\overline{XW} \cong \overline{YZ}$	3	
4. XYZW is a parallelogram	4	

5.

Given: $\Delta XYW \cong \Delta ZWY$

Prove: XYZW is a parallelogram.

Statements	Justifications	
1. $\Delta XYW \cong \Delta ZWY$	1. Given	
2. ≰XYW ≅ ≰YWZ	2	
3. $\overline{XY} \mid \mid \overline{WZ}$	3	
4. $\overline{XY} \cong \overline{WZ}$	4	
5. XYZW is a parallelogram	5	