THEOREM 4 The Fundamental Theorem of Calculus, Part 1

If f is continuous on $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

has a derivative at every point x in $[a, b]$, and

$$
\frac{d F}{d x}=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

THEOREM 4 (continued) The Fundamental Theorem of Calculus, Part 2

If f is continuous at every point of $[a, b]$, and if F is any antiderivative of f on [a, b], then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

This part of the Fundamental Theorem is also called the Integral Evaluation Theorem.

$$
\begin{equation*}
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \tag{1}
\end{equation*}
$$

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

1. If $g(x)=\int_{-2}^{x} w(t) d t$, then $g^{\prime}(x)=$?
2. $\frac{d}{d x}\left[\int_{3}^{x}\left(5 t^{2}-6 t+1\right) d t\right]$
3. Let $g(x)=\int_{1}^{\sin x} \sqrt{1+t^{3}} d t$. What is $g^{\prime}(x)=?$
4. Let $g(x)=\int_{0}^{3 x^{2}} \sin (t) d t$. What is

$$
g^{\prime}(x)=?
$$

5. Find $\frac{d}{d x}\left[\int_{x^{2}}^{3 x} f(t) d t\right]$
6. Let $g(x)=\int_{5 x}^{3 x^{2}} \sqrt{1+t^{3}} d t$. What is $g^{\prime}(x)=$?
7. Evaluate
a. $\int_{0}^{3} x^{2} d x$
b. $\int_{\frac{\pi}{2}}^{\pi}(1+\cos x) d x$
c. $\int_{-1}^{2} 3^{x} d x$
d. $\int_{4}^{9} f^{\prime}(x) d x$
8. Given $\frac{d y}{d x}=3 x^{2}+4 x-5$ with the initial condition $y(2)=-1$, find $y(3)$
9. $f^{\prime}(x)=\sin \left(x^{2}\right)$ and $f(2)=-5$. Find $f(1)$.
10. The graph of f^{\prime} is shown at right, with areas of regions enclosed by the graph and the x -axis as indicated. Give that $f(3)=5$, find $f(0), f(7)$, and $f(9)$.

11. A pizza with a temperature of $95^{\circ} \mathrm{C}$ is put into a $25^{\circ} \mathrm{C}$ room when $t=0$. The pizza's temperature is decreasing at a rate of $r(t)=6 e^{-0.1 t^{\circ}} \mathrm{C}$ per minute. Estimate the pizza's temperature when $t=5$ minutes.
12. The graph of f^{\prime} is the semicircle shown at the right. Find $f(-4)$ if $f(4)=7$

The Trapezoidal Rule

To approximate $\int_{a}^{b} f(x) d x$, use

$$
T=\frac{h}{2}\left(y_{0}+2 y_{1}+2 y_{2}+\cdots+2 y_{n-1}+y_{n}\right)
$$

where $[a, b]$ is partitioned into n subintervals of equal length $h=(b-a) / n$.
Equivalently,

$$
T=\frac{\mathrm{LRAM}_{n}+\mathrm{RRAM}_{n}}{2},
$$

where LRAM_{n} and RRAM_{n} are the Riemann sums using the left and right endpoints, respectively, for f for the partition.

Simpson's Rule

To approximate $\int_{a}^{b} f(x) d x$, use

$$
S=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right),
$$

where $[a, b]$ is partitioned into an even number n of subintervals of equal length $h=(b-a) / n$.
5. Use the trapezoidal rule with $n=4$ to approximate the value of $\int_{0}^{2}\left(x^{3}-x+1\right) d x$.
6. The table below shows the velocity of a remote control car as it travelled down the hallway for 10 seconds. Using the trapezoidal rule, estimate the distance travelled by the car using 10 subintervals.

Time (sec)	0	1	2	3	4	5	6	7	8	9	10
Velocity (in./sec)	0	6	10	16	14	12	18	22	12	4	2

7. Use Simpson's Rule with $n=4$ to approximate the value of $\int_{1}^{2} \sin x d x$ and find the exact value of the integral to check your answer.
