AB Calculus 6.4 Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (FTC)	
Part 1	Part 2
If <i>f</i> is continuous on [<i>a</i> , <i>b</i>], then the function $F(x) = \int_{a}^{x} f(t)dt$ has a derivative at every point <i>x</i> in [<i>a</i> , <i>b</i>], and $\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t)dt = _$	If <i>f</i> is continuous on [<i>a</i> , <i>b</i>], and if is any antiderivative of <i>f</i> on [<i>a</i> , <i>b</i>], then $\int_{a}^{b} f(x)dx = \underline{\qquad}$

1. Find $\frac{dy}{dx}$

a.
$$y = \int_{2}^{x} (3t + \cot(t^2))dt$$

c.
$$y = \int_{6}^{x^2} \cot 3t \, dt$$

b.
$$y = \int_{4}^{3} e^{u} \sec u du$$

d. $y = \int_{3x^{2}}^{5x} \ln(2+p^{2}) dp$

2. The figure below shows the graph of the piecewise-linear function *f*. For $-4 \le x \le 12$, the function *g* is defined by $g(x) = \int_{-4}^{x} f(t)dt$. Does *g* have a relative minimum, a relative maximum, or neither at x = 10? Justify your answer.

3. The functions *f* and *g* are given by $f(x) = \int_{0}^{3x} \sqrt{4 + t^2} dt$ and $g(x) = f(\sin x)$. Find f'(x) and g'(x).

4. The continuous function f is defined on the interval $-5 \le x \le 8$. The graph of f which consists of four line segments is shown in the figure below. Let g be the function given by $g(x) = 2x + \int_{-2}^{x} f(t)dt$. Find g'(x) in terms of f(x). For each of g''(4) and g''(-2), find the value of state that it does not exist.

5. Evaluate each integral using the Evaluation Part of the Fundamental Theorem:

a.
$$\int_{2}^{-1} 3^{x} dx$$

b.
$$\int_{0}^{5} x^{\frac{3}{2}} dx$$

d.
$$\int_{0}^{4} \frac{1 - \sqrt{u}}{\sqrt{u}} du$$

c.
$$\int_{\frac{\pi}{0}}^{\frac{5\pi}{u}} \csc^{2}\theta d\theta$$

6. The graph of f', the derivative of f, is shown below. If f(0) = 20, which of the following could be the value of f(5)?

7. The graph of g', the first derivative of g, consists of a semicircle of radius 2 and two line segments, as shown in the figure below. If g(0) = 1, what is g(3)?

8. Let *f* be a function defined on the closed interval $-5 \le x \le 5$ with f(1) = 3. The graph of *f'* the derivative of *f*, consists of two semicircles and two line segments, as shown below. Find the absolute minimum value of f(x) over the closed interval $-5 \le x \le 5$. Explain your reasoning.

AB Calculus 6.4 Fundamental Theorem of Calculus

9. Find the total area of the region bounded between the curve and the x-axis of $y = 3x^2 - 3$ on $-2 \le x \le 2$