Rhombus:

6.15	If a parallelogram is a rhombus, then its diagonals are perpendicular	
6.16	If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.	

1. QRST is a rhombus.
a. If $m /-3=y^{2}-31$, find the value of y.

b. If $m _R S T=56$, find $m /-T Q S$.

Square:

6.17	If the diagonals of a parallelogram are perpendicular the the parallelogram is a rhombus (converse of Theorem 6.15)	
6.18	If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus (converse of Theorem 6.16)	
6.19	If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus	
6.20	If a quadrilateral is both a rectangle and a rhombus, then it is a square.	

2. In rhombus $\mathrm{ABCD}, A B=2 x+3$ and $B C=5 x$. Find the following:
a. x
b. $A D$

c. $m _A E B$
d. $m _B C D$ if
$m _A B C=83.2$
3. Write a two column proof:

Given: $\overline{W Z}\|\overline{X Y}, \overline{W X}\| \overline{Z Y}$

$$
\overline{W Z} \cong \overline{Z Y}
$$

Prove: $W X Y Z$ is a rhombus

4. Determine whether parallelogram ABCD with vertices $A(1,3), B(-3,1), C(-1,-3)$ and $D(3,-1)$ is a rhombus, rectangle, or square. List all that apply.

