Trapezoidal Rule:

1. The table below gives the level of a person's cholesterol at different times during a 10-week treatment period. What is the average level over this 10-week period obtained by using a trapezoidal approximation using the subintervals [0,2], [2,6], and [6,10]?

Time (weeks)	0	2	6	10
Level	210	200	190	180

2. Use the function values in the following table and the trapezoidal rule with n = 6 to approximate $\int_{2}^{8} f(x) dx$.

							-
x	2	3	4	5	6	7	8
f(x)	16	19	17	14	13	16	20

3. The function *f* is continuous on the closed interval [0, 6] and has the values given in the table above. The trapezoidal approximation for $\int_{0}^{6} f(x)dx$ found with 3 subintervals of equal length is 52. What is the value of *k*?

x	0	2	4	6
f(x)	4	k	8	12

5. Use the trapezoidal rule with n = 4 to approximate the value of $\int_{1}^{2} \frac{1}{x} dx$. Use the

concavity of the function to predict whether the approximation is an overestimate or an underestimate. Find the integrals exact value to check your answer.