

Trapezoidal Rule:

1. The table below gives the level of a person's cholesterol at different times during a 10 -week treatment period. What is the average level over this 10 -week period obtained by using a trapezoidal approximation using the subintervals [0, 2], [2, 6], and $[6,10]$?

Time (weeks)	0	2	6	10
Level	210	200	190	180

2. Use the function values in the following table and the trapezoidal rule with $n=6$ to approximate $\int_{2}^{8} f(x) d x$.

x	2	3	4	5	6	7	8
$f(x)$	16	19	17	14	13	16	20

3. The function f is continuous on the closed interval $[0,6]$ and has the values given in the table above. The trapezoidal approximation for $\int_{0}^{6} f(x) d x$ found with 3 subintervals of equal length is 52 . What is the value of k ?

x	0	2	4	6
$f(x)$	4	k	8	12

5. Use the trapezoidal rule with $n=4$ to approximate the value of $\int_{1}^{2} \frac{1}{x} d x$. Use the concavity of the function to predict whether the approximation is an overestimate or an underestimate. Find the integrals exact value to check your answer.
