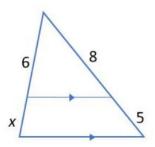
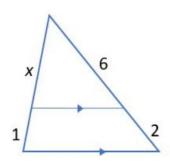
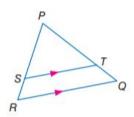

Theorem 7.5

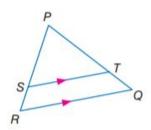
Triangle Proportionality Theorem

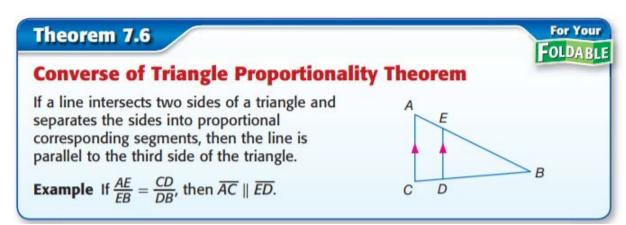

FOLDABLE

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

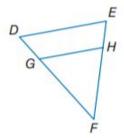

Example If $\overline{BE} \parallel \overline{CD}$, then $\frac{AB}{BC} = \frac{AE}{ED}$.


1. Find *x*:

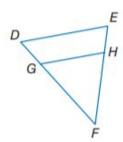

2. Find *x*:

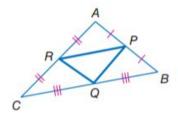


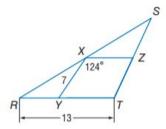
3. In $\triangle PQR$, $\overline{ST} || \overline{RQ}$. If PT = 7.5, TQ = 3, and SR = 2.5, find PS.



4. If PS = 12.5, SR = 5, and PT = 15, find TQ



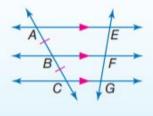

5. In $\triangle DEF$, EH = 3, HF = 9, and DG is one-third the length of \overline{GF} . Is $\overline{DE} || \overline{GH} ?$

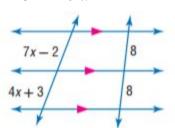

6. DG is half the length of \overline{GF} , EH = 6, and HF = 10. Is $\overline{DE} \parallel \overline{GH}$?

Midsegment of a Triangle:

- 7. In the figure, \overline{XY} and \overline{XZ} are midsegments of $\triangle RST$. Find each measure.
 - a. *XZ*
 - b. ST

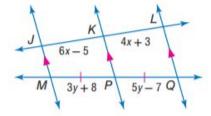
c. m / RYX


Corollary 7.2

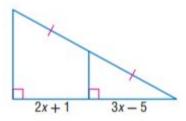

Congruent Parts of Parallel Lines

If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

Example If $\overline{AE} \parallel \overline{BF} \parallel \overline{CG}$, and $\overline{AB} \cong \overline{BC}$, then $\overline{EF} \cong \overline{FG}$.



8. Find *x*



7.4 Parallel Lines and Proportional Parts Geometry CC

9. Find x and y

10. Find x

