## 7.5 Inverse Circular Functions Honors Algebra 2 with Trig

|        | I that if a function is defined so that <i>each range element is used only once</i> , then it is a function.                                                                                              |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Recall | I that the <b>inverse function</b> of the one-to-one function $f$ is defined as follows. $f^{-1} = \{(y, x)   (x, y) \text{ belongs to } f\}$                                                             |  |  |  |
|        | of confuse the $-1$ in $f^{-1}$ with a negative exponent. The symbol $f^{-1}(x)$ represents the of $f$ , not $\frac{1}{f(x)}$ .                                                                           |  |  |  |
| Rev    | view of Inverse Functions                                                                                                                                                                                 |  |  |  |
| 1.     | 1. In a one-to-one function, each x-value corresponds to                                                                                                                                                  |  |  |  |
| 2.     | If a function $f$ is one-to-one, then $f$ has an $f^{-1}$ .                                                                                                                                               |  |  |  |
| 3.     | The domain of $f$ is the of $f^{-1}$ , and the range of $f$ is the lies on the graph of $f^{-1}$ . That is, if the point $(a, b)$ is on the graph of $f$ , then the point lies on the graph of $f^{-1}$ . |  |  |  |
| 4.     | The graphs of f and $f^{-1}$ are of each other across the line $y = x$ .                                                                                                                                  |  |  |  |
| 5.     | To find $f^{-1}(x)$ from $f(x)$ , follow these steps.                                                                                                                                                     |  |  |  |
|        | Step 1                                                                                                                                                                                                    |  |  |  |
|        | Step 2                                                                                                                                                                                                    |  |  |  |
|        | Step 3                                                                                                                                                                                                    |  |  |  |
|        |                                                                                                                                                                                                           |  |  |  |

### **Inverse Sine Function**

#### **Inverse Sine Function**

$$y = \sin^{-1} x$$
 or  $y = \arcsin x$  means that  $x = \sin y$ , for  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ .

We can think of  $y = \sin^{-1} x$  or  $y = \arcsin x$  as

"y is the number (angle) in the interval 
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 whose sine is x."

The domain of  $y = \sin^{-1} x$  is \_\_\_\_\_. The range of  $y = \sin^{-1} x$  is \_\_\_\_\_.

#### **CLASSROOM EXAMPLE 1 Finding Inverse Sine Values**

Find the value of each real number y if it exists.

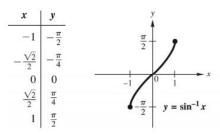
(a) 
$$y = \arcsin \frac{\sqrt{3}}{2}$$

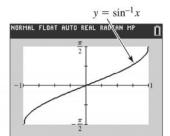
**(b)** 
$$y = \sin^{-1}\left(-\frac{1}{2}\right)$$

(c) 
$$y = \sin^{-1} \sqrt{2}$$

Be certain that the number given for an inverse function value is in the range of the particular inverse function being considered.

### Inverse Sine Function $y = \sin^{-1} x$ or $y = \arcsin x$





Domain: \_\_\_\_\_

Range:

- The inverse sine function is increasing on the open interval \_\_\_\_\_ and continuous on its domain
- Its x- and y-intercepts are both \_\_\_\_\_\_.
- Its graph is symmetric with respect to the \_\_\_\_\_, so the function is an \_\_\_\_\_ function. For all x in the domain,  $\sin^{-1}(-x) =$  \_\_\_\_\_.

#### **Inverse Cosine Function**

#### **Inverse Cosine Function**

 $y = \cos^{-1} x$  or  $y = \arccos x$  means that  $x = \cos y$ , for  $0 \le y \le \pi$ .

We can think of  $y = \cos^{-1} x$  or  $y = \arccos x$  as

"y is the number (angle) in the interval  $[0, \pi]$  whose cosine is x."

The domain of  $y = \cos^{-1} x$  is \_\_\_\_\_. The range of  $y = \cos^{-1} x$  is \_\_\_\_\_.

#### CLASSROOM EXAMPLE 2 Finding Inverse Cosine Values

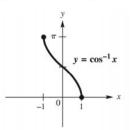
Find the value of each real number y if it exists.

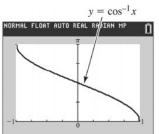
(a) 
$$y = \arccos 0$$

**(b)** 
$$y = \cot^{-1} \frac{1}{2}$$

## Inverse Cosine Function $y = \cos^{-1} x$ or $y = \arccos x$







Domain: \_\_\_\_\_

Range:

- The inverse cosine function is decreasing on the open interval \_\_\_\_\_ and continuous on its domain \_\_\_\_\_
- Its x-intercept is \_\_\_\_\_ and is y-intercept is \_\_\_\_\_.
- Its graph is not symmetric with respect to either the \_\_\_\_\_ or the \_\_\_\_\_\_

### **Inverse Tangent Function**

#### **Inverse Tangent Function**

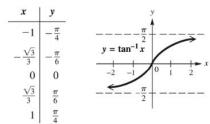
 $y = \tan^{-1} x$  or  $y = \arctan x$  means that  $x = \tan y$ , for  $-\frac{\pi}{2} < y < \frac{\pi}{2}$ .

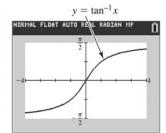
We can think of  $y = \tan^{-1} x$  or  $y = \arctan x$  as

"y is the number (angle) in the interval  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$  whose tangent is x."

The domain of  $y = \tan^{-1} x$  is \_\_\_\_\_. The range of  $y = \tan^{-1} x$  is \_\_\_\_\_.

Inverse Tangent Function  $y = \tan^{-1} x$  or  $y = \arctan x$ 





Domain:

Range: \_\_\_\_\_

- The inverse tangent function is increasing on \_\_\_\_\_ and continuous on its domain
- Its x- and y-intercepts are both \_\_\_\_\_\_.
- Its graph is symmetric with respect to the \_\_\_\_\_\_, so the function is an \_\_\_\_\_ function. For all x in the domain,  $\tan^{-1}(-x) =$  \_\_\_\_\_.
- The lines \_\_\_\_\_ and \_\_\_\_ are horizontal asymptotes.

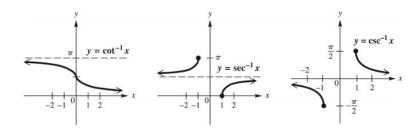
### **Other Inverse Circular Functions**

**Inverse Cotangent, Secant, and Cosecant Functions** 

 $y = \cot^{-1} x$  or  $y = \operatorname{arc} \cot x$  means that  $x = \cot y$ , for  $0 < y < \pi$ .

 $y = \sec^{-1} x$  or  $y = \operatorname{arc} \sec x$  means that  $x = \sec y$ , for  $0 \le y \le \pi$ ,  $y \ne \frac{\pi}{2}$ .

 $y = \csc^{-1} x$  or  $y = \operatorname{arc} \csc x$  means that  $x = \csc y$ , for  $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ ,  $y \ne 0$ .



**Summary of Inverse Circular Functions** 

|                   |        | Range    |                                 |  |
|-------------------|--------|----------|---------------------------------|--|
| Inverse Function  | Domain | Interval | Quadrants of the<br>Unit Circle |  |
| $y = \sin^{-1} x$ |        |          |                                 |  |
| $y = \cos^{-1} x$ |        |          |                                 |  |
| $y = \tan^{-1} x$ |        |          |                                 |  |
| $y = \cot^{-1} x$ |        |          |                                 |  |
| $y = \sec^{-1} x$ |        |          |                                 |  |
| $y = \csc^{-1} x$ |        |          |                                 |  |

## **Inverse Function Values**

# CLASSROOM EXAMPLE 3 Finding Inverse Function Values (Degree-Measured Angles)

Find the *degree measure* of  $\theta$  if it exists.

(a) 
$$\theta = \arctan \sqrt{3}$$

**(b)** 
$$\theta = \csc^{-1}\left(-\sqrt{2}\right)$$

Use the following to evaluate these inverse trigonometric functions on a calculator.

$$\sec^{-1} x$$
 is evaluated as  $\cos^{-1} \frac{1}{x}$ ;  $\csc^{-1} x$  is evaluated as  $\sin^{-1} \frac{1}{x}$ ;

$$\cot^{-1} x \text{ is evaluated as } \begin{cases} \tan^{-1} \frac{1}{x} & \text{if } x > 0 \\ 180^{\circ} + \tan^{-1} \frac{1}{x} & \text{if } x < 0. \end{cases}$$
 Degree mode

# CLASSROOM EXAMPLE 4 Finding Inverse Function Values with a Calculator Use a calculator to approximate each value.

- (a) Find y in radians if  $y = \sec^{-1}(-4)$ .
- **(b)** Find  $\theta$  in degrees if  $\theta = \operatorname{arccot}(-0.2528)$ .

Be careful when using a calculator to evaluate the inverse cotangent of a negative quantity. Enter the inverse tangent of the \_\_\_\_\_\_ of the negative quantity, which returns an angle in quadrant \_\_\_\_\_ . Because inverse cotangent is \_\_\_\_ in quadrant II, adjust the calculator result by adding  $180^{\circ}$  or  $\pi$  accordingly. (Note that  $\cot^{-1} 0 = \frac{\pi}{2}$  or  $90^{\circ}$ .)

# ${\bf CLASSROOM\ EXAMPLE\ 5\ Finding\ Function\ Values\ Using\ Definitions\ of\ the\ Trigonometric\ Functions}$

Evaluate each expression without using a calculator.

(a) 
$$\cos\left(\sin^{-1}\frac{2}{3}\right)$$

**(b)** 
$$\sec\left(\cot^{-1}\left(-\frac{15}{8}\right)\right)$$

## CLASSROOM EXAMPLE 6 Finding Function Values Using Identities

Evaluate each expression without using a calculator.

(a) 
$$\sin\left(\arctan\frac{4}{3} - \arccos\frac{12}{13}\right)$$

**(b)** 
$$\sin(2\operatorname{arccot}(-5))$$