7.5 Inverse Circular Functions
 Honors Algebra 2 with Trig

Recall that if a function is defined so that each range element is used only once, then it is a
\qquad - \qquad - \qquad function.

Recall that the inverse function of the one-to-one function f is defined as follows.

$$
f^{-1}=\{(y, x) \mid(x, y) \text { belongs to } f\}
$$

Do not confuse the -1 in f^{-1} with a negative exponent. The symbol $f^{-1}(x)$ represents the __ of f, not $\frac{1}{f(x)}$.

Review of Inverse Functions

1. In a one-to-one function, each x-value corresponds to y-value and each y-value corresponds to \qquad x-value.
2. If a function f is one-to-one, then f has an \qquad $\ldots f^{-1}$.
3. The domain of f is the \qquad of f^{-1}, and the range of f is the \qquad f^{-1}. That is, if the point (a, b) is on the graph of f, then the point \qquad lies on the graph of f^{-1}.
4. The graphs of f and f^{-1} are \qquad of each other across the line $y=x$.
5. To find $f^{-1}(x)$ from $f(x)$, follow these steps.

Step 1
Step 2 \qquad
Step 3 \qquad

7.5 Inverse Circular Functions
 Honors Algebra 2 with Trig

Inverse Sine Function

Inverse Sine Function

$$
y=\sin ^{-1} x \text { or } y=\arcsin x \text { means that } x=\sin y \text {, for }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \text {. }
$$

We can think of $y=\sin ^{-1} x$ or $y=\arcsin x$ as
" y is the number (angle) in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is x."
The domain of $y=\sin ^{-1} x$ is \qquad . The range of $y=\sin ^{-1} x$ is \qquad .

CLASSROOM EXAMPLE 1 Finding Inverse Sine Values
Find the value of each real number y if it exists.
(a) $y=\arcsin \frac{\sqrt{3}}{2}$
(b) $y=\sin ^{-1}\left(-\frac{1}{2}\right)$
(c) $y=\sin ^{-1} \sqrt{2}$

Be certain that the number given for an inverse function value is in the range of the particular inverse function being considered.

Inverse Sine Function $y=\sin ^{-1} x$ or $y=\arcsin x$

\boldsymbol{x}	\boldsymbol{y}
-1	$-\frac{\pi}{2}$
$-\frac{\sqrt{2}}{2}$	$-\frac{\pi}{4}$
0	0
$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$
1	$\frac{\pi}{2}$

Domain: \qquad
Range: \qquad

- The inverse sine function is increasing on the open interval \qquad and continuous on its domain \qquad .
- Its x - and y-intercepts are both \qquad .
- Its graph is symmetric with respect to the \qquad , so the function is an \qquad function. For all x in the domain, $\sin ^{-1}(-x)=$ \qquad .

Inverse Cosine Function

Inverse Cosine Function

$$
y=\cos ^{-1} x \text { or } y=\arccos x \text { means that } x=\cos y \text {, for } 0 \leq y \leq \pi \text {. }
$$

We can think of $y=\cos ^{-1} x$ or $y=\arccos x$ as
" y is the number (angle) in the interval $[0, \pi]$ whose cosine is x."
The domain of $y=\cos ^{-1} x$ is \qquad The range of $y=\cos ^{-1} x$ is \qquad .

CLASSROOM EXAMPLE 2 Finding Inverse Cosine Values

Find the value of each real number y if it exists.
(a) $y=\arccos 0$
(b) $y=\cot ^{-1} \frac{1}{2}$

Inverse Cosine Function $y=\cos ^{-1} x$ or $y=\arccos x$

\boldsymbol{x}	\boldsymbol{y}
-1	$\boldsymbol{\pi}$
$-\frac{\sqrt{2}}{2}$	$\frac{3 \pi}{4}$
0	$\frac{\pi}{2}$
$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$
1	0

Domain: \qquad
Range: \qquad

- The inverse cosine function is decreasing on the open interval \qquad and continuous on its domain \qquad -.
- Its x-intercept is \qquad and is y-intercept is \qquad .
- Its graph is not symmetric with respect to either the \qquad or the \qquad .

Inverse Tangent Function

Inverse Tangent Function

$$
y=\tan ^{-1} x \text { or } y=\arctan x \text { means that } x=\tan y, \text { for }-\frac{\pi}{2}<y<\frac{\pi}{2} .
$$

We can think of $y=\tan ^{-1} x$ or $y=\arctan x$ as " y is the number (angle) in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is x."

The domain of $y=\tan ^{-1} x$ is \qquad . The range of $y=\tan ^{-1} x$ is \qquad .

Inverse Tangent Function $y=\tan ^{-1} x$ or $y=\arctan x$

\boldsymbol{x}	\boldsymbol{y}
-1	$-\frac{\pi}{4}$
$-\frac{\sqrt{3}}{3}$	$-\frac{\pi}{6}$
0	0
$\frac{\sqrt{3}}{3}$	$\frac{\pi}{6}$
1	$\frac{\pi}{4}$

Domain: \qquad
Range: \qquad

- The inverse tangent function is increasing on \qquad and continuous on its domain
\qquad -
- Its x - and y-intercepts are both \qquad .
- Its graph is symmetric with respect to the \qquad , so the function is an \qquad function. For all x in the domain, $\tan ^{-1}(-x)=$ \qquad _.
- The lines and are horizontal asymptotes.

Other Inverse Circular Functions

Inverse Cotangent, Secant, and Cosecant Functions

$$
\begin{aligned}
& y=\cot ^{-1} x \text { or } y=\operatorname{arccot} x \text { means that } x=\cot y, \text { for } 0<y<\pi . \\
& y=\sec ^{-1} x \text { or } y=\operatorname{arcsec} x \text { means that } x=\sec y, \text { for } 0 \leq y \leq \pi, y \neq \frac{\pi}{2} . \\
& y=\csc ^{-1} x \text { or } y=\operatorname{arccsc} x \text { means that } x=\csc y, \text { for }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, y \neq 0 .
\end{aligned}
$$

Summary of Inverse Circular Functions

	Range		
	Domain	Interval	Quadrants of the Unit Circle
$y=\sin ^{-1} x$			
$y=\cos ^{-1} x$			
$y=\tan ^{-1} x$			
$y=\cot ^{-1} x$			
$y=\sec ^{-1} x$			
$y=\csc ^{-1} x$			

Inverse Function Values

CLASSROOM EXAMPLE 3 Finding Inverse Function Values (Degree-
Measured Angles)
Find the degree measure of θ if it exists.
(a) $\theta=\arctan \sqrt{3}$
(b) $\theta=\csc ^{-1}(-\sqrt{2})$

7.5 Inverse Circular Functions
 Honors Algebra 2 with Trig

Use the following to evaluate these inverse trigonometric functions on a calculator.

$$
\begin{aligned}
& \sec ^{-1} x \text { is evaluated as } \cos ^{-1} \frac{1}{x} ; \quad \csc ^{-1} x \text { is evaluated as } \sin ^{-1} \frac{1}{x} \\
& \cot ^{-1} x \text { is evaluated as }\left\{\begin{array}{ll}
\tan ^{-1} \frac{1}{x} & \text { if } x>0 \\
180^{\circ}+\tan ^{-1} \frac{1}{x} & \text { if } x<0 .
\end{array} \quad\right. \text { Degree mode }
\end{aligned}
$$

CLASSROOM EXAMPLE 4 Finding Inverse Function Values with a Calculator Use a calculator to approximate each value.
(a) Find y in radians if $y=\sec ^{-1}(-4)$.
(b) Find θ in degrees if $\theta=\operatorname{arccot}(-0.2528)$.

Be careful when using a calculator to evaluate the inverse cotangent of a negative quantity. Enter the inverse tangent of the \qquad of the negative quantity, which returns an angle in quadrant \qquad . Because inverse cotangent is \qquad in quadrant II, adjust the calculator result by adding 180° or π accordingly. (Note that $\cot ^{-1} 0=\frac{\pi}{2}$ or 90°.)

CLASSROOM EXAMPLE 5 Finding Function Values Using Definitions of the Trigonometric Functions
Evaluate each expression without using a calculator.
(a) $\cos \left(\sin ^{-1} \frac{2}{3}\right)$
(b) $\sec \left(\cot ^{-1}\left(-\frac{15}{8}\right)\right)$

CLASSROOM EXAMPLE 6 Finding Function Values Using Identities

Evaluate each expression without using a calculator.
(a) $\sin \left(\arctan \frac{4}{3}-\arccos \frac{12}{13}\right)$
(b) $\sin (2 \operatorname{arccot}(-5))$

