Theorems

Special Segments of Similar Triangles
7.8 If two triangles are similar, the lengths of corresponding altitudes are proportional to the lengths of corresponding sides.

Abbreviation $\sim \Delta s$ have corr. altitudes proportional to corr. sides.
Example If $\triangle A B C \sim \triangle F G H$, then $\frac{A D}{F J}=\frac{A B}{F G}$.
FOLDABLE

7.9 If two triangles are similar, the lengths of corresponding angle bisectors are proportional to the lengths of corresponding sides.

Abbreviation $\sim \Delta$ s have corr. \angle bisectors proportional to corr. sides.
Example If $\triangle K L M \sim \triangle Q R S$, then $\frac{L P}{R T}=\frac{L M}{R S}$.

7.10 If two triangles are similar, the lengths of corresponding medians are proportional to the lengths of corresponding sides.

Abbreviation $\sim \Delta s$ have corr. medians proportional to corr. sides.
Example If $\triangle A B C \sim \triangle W X Y$, then $\frac{C D}{Y Z}=\frac{A B}{W X}$.

1. In the figure $\triangle A B C \sim \triangle F D G$. Find the value of x.

2. The triangles below are similar. Find the value of x.

3. The triangles below are similar. Find the value of x.

Theorem 7.11

Triangle Angle Bisector

For Your
FOLDABLE
An angle bisector in a triangle separates the opposite side into two segments that are proportional to the lengths of the other two sides.
Example If $\overline{J M}$ is an angle bisector of $\triangle J K L$, then $\frac{K M}{L M}=\frac{K J}{L J} \longleftarrow$ segments with vertex K

4. Find x in the following diagrams:
a.

C.

d.

