The Law of Sines

1. Solve each triangle. Round side lengths and angle measures to the nearest tenth.
a. $a=3.5, A=25^{\circ}, B=35^{\circ}$
b. $\quad a=48, A=110^{\circ}, b=16$
2. A pine tree growing on a hillside makes a 75° angle with the hill. From a point 80 feet up the hill, the angle of elevation to the top of the tree is 62° and the angle of depression to the bottom is 23°. Find, to the nearest foot, the height of the tree.

The Law of Cosines

3. Solve each triangle. Round side lengths and angle measures to the nearest tenth. a. $\quad a=145, b=132, c=84$
b. $\quad a=8.5, c=7.7, B=38^{\circ}$
4. A plane leaves an airport in Antwerp and travels 580 miles to an airport in Berlin on a bearing of $N 34^{\circ} \mathrm{E}$. The plane leaves the Berlin airport and travels to the Cairo airport 400 miles away on a bearing of $S 74^{\circ} \mathrm{E}$. Find the distance between the airports in Antwerp and Cairo. Round to the nearest tenth of a mile.
5. Solve the triangle below. (Use Law of Sines and/or Law of Cosines). Round side lengths and angle measures to the nearest tenth.

$$
A=162^{\circ}, b=11.2, c=48.2
$$

The Ambiguous Case (SSA)

6. Determine the number of triangles that can be formed with the given information.
a. $b=9, c=12, C=63^{\circ}$
b. $\quad a=27, b=22, B=33^{\circ}$
c. $\quad a=10, b=30, A=150^{\circ}$
7. Solve the triangle. If more than one solution is possible, find both solutions.
a. $\quad a=25, c=26, A=70^{\circ}$

Area of oblique triangles

8. Find the area of each triangle below. Round your answer to the nearest hundredth.
a.
b. $a=145, b=132, c=84$

8.1 The Law of Sines
8.2 The Law of Cosines Honors Algebra 2 with Trig
c.
d. $\quad a=90^{\circ}, a=13, b=12$

