We can extend the idea of definite integrals finding the area of a region under a curve to the area of a region between two curves. If two functions are both continuous on an interval [a, b], then the region between the curves can be found by subtracting the area of the upper region and the area of the lower region.


Area of upper function
$f(x)$

(-)
Area of lower function =
$g(x)$


$$
\int_{a}^{b}(f(x)-g(x)) d x
$$



## Area from $a$ to $c$

$A=\int_{a}^{b}[f(x)-h(x)] d x+\int_{b}^{c}[g(x)-h(x)] d x$

1. Find the area of the region bounded by $y=x^{2}+2, y=-x, x=-1, x=2$.

2. Find the area of the region bounded by $f(x)=e^{x}, g(x)=x+3$

3. Find the area of the shaded region bounded by the x -axis and $f(x)$ and $h(x)$

4. Find the area of the shaded region from [2, 11]

5. Find the area of the region bounded by $y=\frac{1}{2} x^{3}+2$ and $y=x+1$
6. Find the area of the region bounded by $f(x)=x^{2}-4 x$ and $g(x)=0$
7. Find the area of the region bounded by the graphs of $x=3-y^{2}$ and $x=y+1$

8. Find the area of the region bounded by $f(x)=2 \sin x$ and $g(x)=\tan x$
9. Find the area of the region bounded by $f(x)=x^{3}-3 x^{2}+3 x$ and $g(x)=x^{2}$
10. Find the area of the region bounded by $f(x)=x^{4}-2 x^{2}+1$ and $g(x)=1-x^{2}$
