Volume by Cross Sections

Two-dimensional cross sections can be stacked on top of (or next to) each other to create a 3D figure. We use the area between two curves to represent the base of the cross sectional shape.

Volume of a Solid:

Cross Sections taken PERPENDICULAR to the X-AXIS

The volume of a solid of known integrable cross section area $A(x)$ from $x=a$ to $x=b$ is the integral of A from a to b.

$$
V=\int_{a}^{b} A(x) d x
$$

Cross Sections taken PERPENDICULAR to the Y-AXIS

The volume of a solid of known integrable cross section area $A(y)$ from $y=c$ to $y=d$ is the integral of A from c to d

$$
V=\int_{C}^{b} A(y) d y
$$

Where $A(x)$ and $A(y)$ are known geometric formulas for the area of a shape.
Example: square cross-sections $\rightarrow A=s^{2}$, semi-circle cross sections $\rightarrow A=\frac{1}{2} \pi r^{2}$, equilateral triangle cross-sections $\rightarrow A=\frac{\sqrt{3}}{4} s^{2}$

1. Let R be the region in the first quadrant under the graph of $y=\sqrt{x-3}$ for $3 \leq x \leq 7$. Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x -axis (vertical cross sections) are:
a. Squares

b. Equilateral Triangles
c. Semicircles
d. Rectangle with height of 5
e. Isosceles Right Triangle where the leg is the base.
2. Let R be the region in the first quadrant under the graph of $y=\sqrt{x-3}$ for $3 \leq x \leq 7$. Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the y-axis (horizontal cross sections) are:
a. Squares
b. Isosceles Right Triangles where the hypotenuse is the base

Volume by Disk Method

Create a 3-dimensional region is by rotating a function around a line. The rotation creates circular cross-sections that combine to create the volume. The resulting solid is called the solid of revolution, and the line that it revolved around is called the axis of revolution. The area of each circle is $A=\pi r^{2}$, where r is distance from the function to the axis of revolution.

To find the volume of a solid of revolution with the disk method, use one of the following formulas:
Horizontal Axis of Revolution

Vertical Axis of Revolution

2. Using the Disk Method x -axis

Find the volume of the region enclosed by $f(x)=\sqrt{x}$ and the x -axis from [0, 9] rotated about the x -axis.

3. Using the Disk Method y-axis

Find the volume of the solid generated when the area bounded by lines $y=6 x-3, x=0$, and $y=6$ is revolved around the y-axis.

4. Revolving About a Line That is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by $f(x)=2-x^{2}$ and $g(x)=-1$ about the line $y=-1$.

Find the volume of the solid formed by revolving the region bounded by $y=\sqrt{x+4}, y=2$, and $\mathrm{x}=2$ about the line $\mathrm{x}=2$.

Volume by Washer Method

The disk method can be extended to cover solids of revolution with holes by replacing the representative disk with a representative washer. The washer is formed by revolving a rectangle about an axis.

Washer Method:
If r is the inner radius and R is the outer radius, then
$V=\pi \int_{a}^{b}\left[R(x)^{2}-r(x)^{2}\right] d x$
or,

$$
V=\pi \int_{a}^{b} R(x)^{2} d x-\pi \int_{a}^{b} r(x)^{2} d x
$$

8. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=4 x-x^{2}$ and $f(x)=x^{2}$ from [0,2] about the...
a) x-axis.
b) the line $y=5$
9. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=2 x+2, y=x^{2}+2$ about the x -axis.
10. Find the volume of the solid generated by revolving the region bounded by $x=-y^{2}+2, x=y$ about the line $x=-3$.

