Volume by Disk Method

Create a 3-dimensional region is by rotating a function around a line. The rotation creates circular cross-sections that combine to create the volume. The resulting solid is called the **solid of revolution**, and the line that it revolved around is called the **axis of revolution**. The area of each circle is $A = \pi r^2$, where r is distance from the function to the axis of revolution.

To find the volume of a solid of revolution with the disk method, use one of the following formulas:

Horizontal Axis of Revolution

Vertical Axis of Revolution

2. Using the Disk Method x-axis

Find the volume of the solid formed by revolving the region bounded by the graph of

 $f(x) = \sqrt{\sin x}$ and the x-axis from $[0, \pi]$ about the x-axis.

3. Using the Disk Method y-axis

Find the volume of the solid formed by revolving the region bounded by the graph of $y = x^2 + 1$ and the y-axis for $1 \le y \le 5$ about the y-axis.

4. Revolving About a Line That is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by $f(x) = 2 - x^2$ and g(x) = 1 about the line y = 1.

Find the volume of the solid formed by revolving the region bounded by $y = \sqrt{x+1}$, y = 3, and x = -1 about the line x = -1.

Find the volume of the solid formed by revolving the region bounded by $y = x^2$, the x-axis, and x = 2 about the line x = 2.

Find the volume of the solid formed by revolving the region bounded by $y = x^2$, y = 4, and the y-axis, about the line y = 4.