## Volume by Disk Method

Create a 3-dimensional region is by rotating a function around a line. The rotation creates circular cross-sections that combine to create the volume. The resulting solid is called the solid of revolution, and the line that it revolved around is called the axis of revolution. The area of each circle is $A=\pi r^{2}$, where $r$ is distance from the function to the axis of revolution.


To find the volume of a solid of revolution with the disk method, use one of the following formulas:
Horizontal Axis of Revolution


## 2. Using the Disk Method x-axis

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=\sqrt{\sin x}$ and the x -axis from $[0, \pi]$ about the x -axis.

## 3. Using the Disk Method y-axis

Find the volume of the solid formed by revolving the region bounded by the graph of $y=x^{2}+1$ and the $y$-axis for $1 \leq y \leq 5$ about the $y$-axis.

## 4. Revolving About a Line That is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by $f(x)=2-x^{2}$ and $\mathrm{g}(\mathrm{x})=1$ about the line $\mathrm{y}=1$.

Find the volume of the solid formed by revolving the region bounded by $y=\sqrt{x+1}, y=3$, and $x=-1$ about the line $x=-1$.

Find the volume of the solid formed by revolving the region bounded by $y=x^{2}$, the $x$ - $a x i s$, and $x$ $=2$ about the line $\mathrm{x}=2$.

Find the volume of the solid formed by revolving the region bounded by $y=x^{2}, y=4$, and the $y$-axis, about the line $y=4$.

