Arc Length:
The length of a curve is found by summing small segments using distance formula

$$
\begin{aligned}
& d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}\left(\frac{\Delta x}{\Delta x}\right)^{2}} \\
& d=\sqrt{(\Delta x)^{2}+\left(\frac{\Delta y}{\Delta x}\right)^{2}(\Delta x)^{2}} \\
& d=\sqrt{(\Delta x)^{2}\left(1+\left(\frac{\Delta y}{\Delta x}\right)^{2}\right)} \\
& d=\sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}}(\Delta x) \\
& d=\sqrt{1+f^{\prime}(x)^{2}}(\Delta x) \\
& \text { length }=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
\end{aligned}
$$

Smoothness:

A function with a continuous first derivative is smooth and its graph is a smooth curve.

DEFINITION Arc Length: Length of a Smooth Curve

If a smooth curve begins at (a, c) and ends at $(b, d), a<b, c<d$, then the length (arc length) of the curve is

$$
\begin{aligned}
& L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad \text { if } y \text { is a smooth function of } x \text { on }[a, b] ; \\
& L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& \text { if } x \text { is a smooth function of } y \text { on }[c, d] .
\end{aligned}
$$

1. Find the arc length of $f(x)=x^{2}$ on the interval of $[-1,1]$.
2. Find the arc length of $f(x)=\frac{3}{2} x^{\frac{2}{3}}$ on the interval of $[1,8]$.

Getting around a corner:
3. Find the length of the curve $y=x^{2}-4|x|-x$ from $x=-4$ to $x=4$.
4. Find the length of the curve $x=\int_{0}^{y} \sqrt{\sec ^{2} t-1} d t,-\frac{\pi}{3} \leq y \leq \frac{\pi}{4}$
5. Find the length of the curve $y=x^{\frac{1}{3}}$ on the interval of $[-8,8]$

