BC Calculus

9.1 Sequences

Sequence: is a list of numbers written in an explicit order.

Primary focus is on infinite sequences and whether or not they converge or diverge. If a sequences converges its terms approach limiting values.

Limit of a Sequence

We write $\lim _{n \rightarrow \infty} a_{n}=L$ and say that the sequence converges to L. Sequences that do not have limits diverge

Properties of Limits

If L and M are real numbers and $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$, then:

1. Sum Rule:

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M
$$

2. Product Rule:
$\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L \cdot M$
3. Quotient Rule:
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$
4. Difference Rule:
$\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=L-M$
5. Constant Multiple Rule:
$\lim _{n \rightarrow \infty}\left(c \cdot a_{n}\right)=c \cdot L$
6. Determine whether the sequence converges or diverges. If it converges, find its limit.
a. $\quad a_{n}=\frac{2_{n}-1}{n}$
b. $\quad a_{n}=\frac{n}{n^{2}+1}$
c. $\quad a_{n}=(-1)^{n} \frac{n+1}{n^{2}+2}$
d. $a_{n}=(0.9)^{n}$
e. $\quad a_{n}=\cos \left(n \frac{\pi}{2}\right)$

Squeeze Theorem for Sequences
If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$ and if there is an integer N for which $a_{n} \leq b_{n} \leq c_{n}$ for all $n>N$, then $\lim _{n \rightarrow \infty} b_{n}=L$

2. Use the Squeeze Theorem to show that the sequence with given nth term converges and find its limit.
a. $\quad a_{n}=\frac{1}{2^{n}}$
b. $\quad a_{n}=\frac{\sin ^{2} n}{2^{n}}$

Absolute Value Theorem
Consider the sequence $\left\{a_{n}\right\}$. If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$

