Sequence: is a list of numbers written in an explicit order.

Primary focus is on infinite sequences and whether or not they converge or diverge. If a sequences converges its terms approach limiting values.

Limit of a Sequence

We write $\lim_{n\to\infty} a_n = L$ and say that the sequence converges to *L*. Sequences that do not have limits diverge

Properties of Limits If *L* and *M* are real numbers and $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$, then:

- 1. Sum Rule: $\lim_{n \to \infty} (a_n + b_n) = L + M$
- 2. Product Rule: $\lim_{n \to \infty} (a_n b_n) = L \bullet M$
- 3. Quotient Rule: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}$
- 4. Difference Rule: $\lim_{n \to \infty} (a_n - b_n) = L - M$
- 5. Constant Multiple Rule: $\lim_{n \to \infty} (c \bullet a_n) = c \bullet L$
- 1. Determine whether the sequence converges or diverges. If it converges, find its limit.

a.
$$a_n = \frac{2_n - 1}{n}$$
 b. $a_n = \frac{n}{n^2 + 1}$

BC Calculus 9.1 Sequences

c.
$$a_n = (-1)^n \frac{n+1}{n^2+2}$$
 d. $a_n = (0.9)^n$

e. $a_n = \cos(n\frac{\pi}{2})$

2. Use the Squeeze Theorem to show that the sequence with given *n* th term converges and find its limit.

BC Calculus 9.1 Sequences

a.
$$a_n = \frac{1}{2^n}$$
 b. $a_n = \frac{\sin^2 n}{2^n}$

Absolute Value Theorem		
Consider the sequence $\{a_n\}$. If	$\lim_{n\to\infty} a_n =0, \text{ then }$	$\lim_{n\to\infty}a_n=0$