L'Hospital's Rule

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a and that $g'(a) \neq 0$ on I if $x \neq a$. Then

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)}{g'(a)}$

if the latter limit exists.

* $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)}{g'(a)}$ can be used for the indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$

1. Evaluate the following:

a.
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$
 c. $\lim_{x \to 0^+} x \ln x$

b.
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{\sin x - 1}$$
 d.
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin \theta}{1 + \cos 2\theta}$$

When we reach a point where one of the derivatives approaches 0 and the other does not, then:

- a. The numerator approaches $0 \rightarrow$ the limit is 0
- b. The denominator approaches $0 \rightarrow$ the limit is $\pm \infty$
- 2. Evaluate the following $\lim_{x\to 0} \frac{\sin x}{x^2}$

3. Evaluate the following:

9.2 L'Hospital's Rule BC Calculus

b.
$$\lim_{x \to 0^+} \frac{\tan x}{x}$$

a.
$$\lim_{x \to 0^{-}} \frac{\tan x}{x}$$

Evaluate the following:

4.
$$\lim_{y \to 0^+} \frac{\ln(y^2 + 2y)}{\ln y}$$

9.2 L'Hospital's Rule BC Calculus

8. $\lim_{x \to -\infty} \frac{3x-1}{1-5x}$

7. $\lim_{x \to \infty} \frac{e^{2x}-1}{x}$

9. $\lim_{x \to \infty} \frac{3x^3 + 4x^2}{4x^3 - 7}$

6. $\lim_{x\to\infty}\frac{x^2}{e^x}$

9.2 L'Hospital's Rule BC Calculus

