Parabola:

Latus Rectum:

Equations of Parabolas		
Form of Equation		$x=a(y-k)^{2}+h$
Direction of Opening	$a>0$	
$a<0$	$a>0$	
Vertex		
Axis of Symmetry		
Focus	$\left(h, k+\frac{1}{4 a}\right)$	$\left(h+\frac{1}{4 a}, k\right)$
Directrix	$y=k-\frac{1}{4 a}$	
Length of Latus Rectum	$\left\|\frac{1}{a}\right\|$ units	

1. Write $y=2 x^{2}-12 x+6$ in standard form. Identify the vertex, axis of symmetry, and direction of opening of the parabola.
2. Graph each equation in general form:
a. $2 x-y^{2}=4 y+10$

b. $y+2 x^{2}+32=-16 x-1$

c. $3 x-y^{2}=4 x+25$

3. Write an equation for a parabola with vertex at $(-2,-3)$ and directrix $y=1$. Then graph the equation.

4. Write an equation for a parabola with vertex at $(1,3)$ and focus $(1,5)$. Then graph the equation.

5. Write an equation for a parabola with focus $(5,6)$ and directrix $x=-2$. Then graph the equation.

