

Parabola:

Latus Rectum:

Equations of Parabolas		
Form of Equation		$x = a(y-k)^2 + h$
Direction of Opening	a > 0 $a < 0$	a > 0 $a < 0$
Vertex		
Axis of Symmetry		
Focus	$(h, k+\frac{1}{4a})$	$\left(h+\frac{1}{4a},k\right)$
Directrix	$y = k - \frac{1}{4a}$	
Length of Latus Rectum	$\left \frac{1}{a}\right $ units	$\left \frac{1}{a}\right $ units

1. Write $y = 2x^2 - 12x + 6$ in standard form. Identify the vertex, axis of symmetry, and direction of opening of the parabola.

2. Graph each equation in general form:

a. $2x - y^2 = 4y + 10$

9.2 Parabolas Honors Algebra 2

b. $y + 2x^2 + 32 = -16x - 1$

c. $3x - y^2 = 4x + 25$

3. Write an equation for a parabola with vertex at (-2, -3) and directrix y = 1. Then graph the equation.

4. Write an equation for a parabola with vertex at (1,3) and focus (1,5). Then graph the equation.

9.2 Parabolas Honors Algebra 2

5. Write an equation for a parabola with focus (5, 6) and directrix x = -2. Then graph the equation.

