Ellipse:

Major and Minor Axis:

Constant Sum

KeyConcept Equations of Ellipses Centered at the Origin		
Standard Form	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Orientation	horizontal	vertical
Foci	$(c, 0),(-c, 0)$	$(0, c),(0,-c)$
Length of Major Axis	$2 a$ units	$2 a$ units
Length of Minor Axis	$2 b$ units	$2 b$ units

Important Relationships:

1. Write the equation for the ellipse:

2. Write an equation for an ellipse with vertices at $(-4,0)$ and $(4,0)$ and foci at $(2,0)$ and $(-2,0)$.

KeyConcept Equations of Ellipses Centered at (h, \boldsymbol{k})

Standard Form	$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1$
Orientation	horizontal	vertical
Foci	$(h \pm c, k)$	$(h, k \pm c)$
Vertices	$(h \pm a, k)$	$(h, k \pm a)$
Co-vertices	$(h, k \pm b)$	$(h \pm b, k)$

3. Write an equation for the ellipse with vertices at $(6,-8)$ and $(6,4)$ and co-vertices at $(3,-2)$ and $(9,-2)$.
4. Write an equation for the ellipse with vertices at $(-3,8)$ and $(9,8)$ and co-vertices at $(3,12)$ and $(3,4)$.
5. Find the coordinates of the center and foci, and the lengths of the major and minor axes of an ellipse with equation $25 x^{2}+9 y^{2}+250 x-36 y+436=0$. Then graph the ellipse.

6. Find the coordinates of the center and foci and the lengths of the major and minor axes of the ellipse with equation $x^{2}+4 y^{2}-2 x+24 y+21=0$. Then graph the ellipse.

7. Find the coordinates of the center and foci and the lengths of the major and minor axes of the ellipse with equation $\frac{(y+1)^{2}}{64}+\frac{(x-5)^{2}}{28}=1$. Then graph the ellipse.

8. Find the coordinates of the center and foci and the lengths of the major and minor axes of the ellipse with equation $4 x^{2}+y^{2}-32 x-4 y+52=0$. Then graph the ellipse.

