The equation for any conic section can be written in the form
where A, B, and C are not all zero.

This general form can be converted to
 standard forms by \qquad

Conic Section	Standard Form of Equations
Circle	
Parabola	
Ellipse	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
Hyperbola	

1. Write $4 x^{2}+y^{2}-16 x+8 y-4=0$ in standard form. State whether the graph of the equation is a parabola, circle, or ellipse. Then graph the equation.

2. Write $y^{2}=18-2 x^{2}$ in standard form. State whether the graph of the equation is a parabola, circle, or ellipse. Then graph the equation.

Can determine the type of conic without writing the equation
$A x^{2}+B x y+C y^{2}+D x+E y+F=0$ in standard form if there is an $x y$ term. So \qquad

Discriminant

Discriminant	Conic Section
$B^{2}-4 A C<0 ; B=0$ and $A=C$	
$B^{2}-4 A C<0 ; B \neq 0$ and $A \neq C$	
$B^{2}-4 A C=0$	
$B^{2}-4 A C>0$	

3. Without writing in standard form, state whether the graph of each equation is a parabola, circle, ellipse, or hyperbola.
a. $y^{2}+4 x^{2}-3 x y+4 x-5 y-8=0$
b. $3 x^{2}-6 x+4 y-5 y^{2}+2 x y-4=0$
d. $y^{2}-2 x-4 y+10=0$
c. $4 y^{2}-8 x+6 y-14=0$
e. $2 x^{2}+2 y^{2}+16 x-20 y=-32$
