Big Idea \#1 Limits

Concept	Question
1. Properties of Limits	$f(x)$ $g(x)$ The graph of a function f and g are shown above. Find $\lim _{x \rightarrow 2}(f(x)+3 g(x))$
2. Two-Sided Limits	$\lim _{x \rightarrow 5} \frac{2 x+10}{x^{2}+2 x-15}$
3. One-Sided Limits	 The graph of a function f is shown above. Find $\begin{aligned} & \lim _{x \rightarrow 5^{-}} f(x)= \\ & \lim _{x \rightarrow 5^{+}} f(x)= \end{aligned}$

	Let $f(x)$ equal the following piecewise function: $f(x)= \begin{cases}\frac{x^{2}-6 x}{x} & , x \neq 0 \\ 2 k-1 & , x=0\end{cases}$ If f is continuous at $x=0$, then $k=$
7. Determining if a function is continuous (using limits)	 The graph of a function f is shown above. If $\lim _{x \rightarrow b} f(x)$ exists and f is discontinuous at b, then $b=$
8. Intermediate Value Theorem *and the script that goes with it	Let f be a continuous function on the closed interval $[-3,6]$. If $f(-3)=-1$ and $f(6)=3$, then the Intermediate Value Theorem guarantees that A. $f(0)=0$ B. $f^{\prime}(c)=\frac{4}{9}$ for at least one c between -3 and 6 C. $-1 \leq f(x) \leq 3$ for all x between -3 and 6 D. $f(c)=1$ for at least one c between -3 and 6 E. $f(c)=0$ for at least one c between -1 and 3

