Big Idea #2 Derivatives

Concept	Question			
1. Constructing a Tangent Line	Consider the curve given by the equation $y^3 - xy = 2$. It can be shown that $\frac{dy}{dx} = \frac{y}{3y^2 - x}$. Write an equation for the line tangent to the curve at the point (-1, 1).			
2. Constructing a Normal Line	Consider the curve given by the equation $y^3 - xy = 2$. It can be shown that $\frac{dy}{dx} = \frac{y}{3y^2 - x}$. Write an equation for the normal line to the curve at the point (-1, 1).			
3. Definitions of Slope $\lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \text{ and } \lim_{x \to a} \frac{f(x)-f(a)}{x-a}$	What is $\lim_{h \to 0} \frac{8(\frac{1}{2}+h)^8 - 8(\frac{1}{2})^8}{h}$ What is $\lim_{x \to 2} \frac{e^x - e^2}{x - 2}$			

7. One-side Derivatives	$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & , x \neq 2\\ 1 & , x = 2 \end{cases}$ Let <i>f</i> be the function defined above. Which of the following statements about <i>f</i> are true? I. <i>f</i> has a limit at $x = 2$ II. <i>f</i> is continuous at $x = 2$ III. <i>f</i> is differentiable at $x = 2$
8. Determining if a function is differentiable with limits	$f(x) = \begin{cases} cx + d & , x \leq 2\\ x^2 - cx & , x > 2 \end{cases}$ Let <i>f</i> be the function defined above, where <i>c</i> and <i>d</i> are constants. If <i>f</i> is differentiable at <i>x</i> = 2, what is the value of <i>c</i> + <i>d</i> ?
9. Derivative fails to exist knowing parent graphs *corner, cusp, etc.	Let <i>f</i> be the function given by $f(x) = x - 2 $. Which of the following statements about <i>f</i> are true? I. <i>f</i> is continuous at $x = 2$ II. <i>f</i> is differentiable at $x = 2$ III. <i>f</i> has no absolute minimum at $x = 2$
10. Differentiability implies continuity	The function f is differentiable at $x = 3$. Which of the following statements is guaranteed to be false? I. $\lim_{x\to 3} f(x)$ exists II. $\lim_{h\to 0} \frac{f(3+h)-f(3)}{h}$ exists III. $f(3)$ exists IV. $f''(3)$ exists V. $\lim_{x\to 3} f(x) = f(3)$

	If $f(x) = (x - 1)(x^2 + 3)^3$, then $f'(x) =$
11. Product Rule	
	What is the instantaneous rate of change at $x = 2$ of the function f given by $f(x) = \frac{x^2-2}{x-1}$?
12. Quotient Rule	
13. Derivative of all 6 trig functions	If $f(x) = \tan(2x)$, then $f'(\frac{\pi}{6}) =$
	If $f(x) = \sin(e^{-x})$, then $f'(x) =$
	If $g(x) = \cos(x^2)$, then $f'(x) =$
	$\frac{d}{dx}\cot(3x)$
	Find the derivative of $y = 3 \sec(\pi x)$

	Find the derivative of $f(x) = \csc(5x^2)$			
14. Chain Rule	$\frac{d}{dx}\cos^2(x^3)$			
		())		
	x	f(x)	$f^{-1}(x)$	
	1	2	1/2	
	2	3	<u>1</u> 3	
15. Derivative of Inverse	3	1	-2	
Function	If <i>f</i> and f^{-1} exist, are continuous and differentiable for $x > 0$, then $\frac{d}{dx}(f^{-1}(x))$ at $x = 1$ is what?			
16. Implicit Differentiation	The slope of the line tangent to the curve $y^2 + (xy + 1)^3 = 0$ at (2,-1) is what?			

	Find the derivative of $\sin^{-1}(x^2)$
17. Derivatives of all 6 inverse trig functions	$\frac{d}{dx}\cos^{-1}(3x)$ $\frac{d}{dx}\tan^{-1}(e^{x})$ Find the derivative of $\sec^{-1}(x)$ Find the derivative of $\cot^{-1}(5x^{2})$
	$\frac{d}{dx}\csc^{-1}\frac{x}{2}$
	If $f(x) = \frac{e^{2x}}{2x}$, then $f'(x) =$
18. Derivative of exponential	

	If $f(x) = (x-1)^{\frac{3}{2}} + \frac{e^{x-2}}{2}$, then $f'(2) =$
19. Derivative of logarithmic	If $f(x) = x^2 + 2x$, then $\frac{d}{dx}(f(\ln x)) =$ If $f(x) = (\ln x)^2$, then $f''(\sqrt{e}) =$
20. L'hospital's Rule	Functions <i>f</i> , <i>g</i> , and <i>h</i> are twice differentiable functions with $g(2) = h(2) = 4$. The line $y = 4 + \frac{2}{3}(x-2)$ is tangent to both the graph of <i>g</i> at $x = 2$ and the graph of <i>h</i> at $x = 2$. The function <i>h</i> satisfies $h(x) = \frac{x^2-4}{1-(f(x))^3}$ for $x \neq 2$. It is known that $\lim_{x\to 2} h(x)$ can be evaluated using L'hospital's Rule. Use $\lim_{x\to 2} h(x)$ to find $f(2)$ and $f'(2)$. Show the work that leads to your answers.

21. Derivatives from a table	x	f(x)	f'(x)	g(x)	g'(x)
	-1	6	5	3	-2
	1	3	-3	-1	2
	3	1	-2	2	3
	The table above gives values of f , f' , g , g' at selected values of x . If $h(x) = f(g(x))$, then $h'(1) =$				