Big Idea #2 Derivatives | Concept | Question | |--|---| | 1. Constructing a Tangent Line | Consider the curve given by the equation $y^3 - xy = 2$. It can be shown that $\frac{dy}{dx} = \frac{y}{3y^2 - x}$. Write an equation for the line tangent to the curve at the point $(-1, 1)$. $\frac{dy}{dx} = \frac{1}{3(1)^2 - (-1)} = \frac{1}{4}$ $y - 1 = \frac{1}{4}(x + 1)$ | | 2. Constructing a Normal Line | Consider the curve given by the equation $y^3 - xy = 2$. It can be shown that $\frac{dy}{dx} = \frac{y}{3y^2 - x}$. Write an equation for the normal line to the curve at the point $(-1, 1)$. $\frac{dy}{dx} = \frac{1}{4} \qquad m = -4$ $y - 1 = -4(x+1)$ | | 3. Definitions of Slope $\lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \text{ and } \lim_{x \to a} \frac{f(x)-f(a)}{x-a}$ | What is $\lim_{h\to 0} \frac{8(\frac{1}{2}+h)^8 - 8(\frac{1}{2})^8}{h}$ $f(x) = 8x$ $f'(x) = 64x^7$ $f'(1/2) = 64(1/2)^7 = 1/2$ What is $\lim_{x\to 2} \frac{e^{x} - e^2}{x^2}$ $f(x) = e^{x}$ $f'(x) = e^{x}$ | roa whospitals auto | If $f(x) = -x^3 + x + \frac{1}{x}$, then $f'(-1) =$ | |--| | If $f(x) = -x^3 + x + \frac{1}{x}$, then $f'(-1) = $ $f'(x) = -3x^2 + 1 - x^{-2}$ | | 014.13 | $$f'(-1) = -3 + 1 - 1 = -3$$ Let f and g be differentiable functions with the following properties I. $$g(x) > 0$$ for all x II. $$f(0) = 1$$ If h(x) = f(x)g(x) and h'(x) = f(x)g'(x), then f(x) =4. Basic Derivative B. $$g(x)$$ product rule C. $$e^x$$ Graph the derivative of the function on the same graph as the function. 6. Graphing the original function from the derivative graph Below is the graph of the derivative of f. Graph the original function on the same graph. | | V-2 | | |---|---|-------| | 7. One-side Derivatives * if it was cont, to test diff f'(x) = { !im f'(x) = 1 im f'(x) = 1 x > 2 x | $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & , x \neq 2 \\ 1 & , x = 2 \end{cases}$ Let f be the function defined above. Which of the following statements about f are true? I. If has a limit at $x = 2$ III. f is continuous at $x = 2$ III. f is differentiable at $x = 2$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $x \to 2$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ $\lim_{x \to 2} f(x) = 2 + 2 = 4$ | | | | $f(x) = \begin{cases} cx + d & , x \le 2 \\ x^2 - cx & , x > 2 \end{cases}$ Let f be the function defined above, where c and d are constants. If f is differentiable at $x = 2$, what is the value of $c + d$? $\lim_{x \to 2^{-}} f(x) = 2c + d \qquad \lim_{x \to 2^{+}} f(x) = 4 - 2c$ $\lim_{x \to 2^{-}} f(x) = 2c + d \qquad \lim_{x \to 2^{+}} f(x) = 4 - 2c$ | 2 > 2 | | C = 4 - C | 2c+a = 4-2c H(3)+a=4 | | | 9. Derivative fails to exist knowing parent graphs *corner, cusp, etc. | Let f be the function given by $f(x) = x - 2 $. Which of the following statements about f are true? I. f is continuous at $x = 2$ II. f is differentiable at $x = 2$ III. f has no absolute minimum at f and f are are f and f are f and f are f are f are f and f are f are f and f are f are f and f are f are f are f and are f and f are f are f are f and f are and f are | | | 10. Differentiability implies continuity | The function f is differentiable at $x = 3$. Which of the following statements is guaranteed to be false? I. $\lim_{x \to 3} f(x)$ exists f if f then II. $\lim_{h \to 0} \frac{f(3+h)-f(3)}{h}$ exists f continuity f (3) exists f v. $\lim_{x \to 3} f(x) = f(3)$ v. $\lim_{x \to 3} f(x) = f(3)$ | | | | If $f(x) = (x-1)(x^2+3)^3$, then $f'(x) =$ | |------------------------------|---| | | $f'(x) = (x^2+3)^3 + (x-1)(3(x^2+3)^2(2x))$ | | 11. Product Rule | $= (x^2+3)^3 + 6x(x-1)(x^2+3)^2$ | | | $= (x^2 + 3)^3 (6x^2 - 6x + 1)$ | | | What is the instantaneous rate of change at $x = 2$ of the function f given by $f(x) = \frac{x^2 - 2}{x - 1}$? | | 12. Quotient Rule | $f'(x) = \frac{(x-1)(2x) - (x^2-2)}{(x-1)^2}$ | | | $f'(2) = \frac{4-2}{1} = 2$ | | 13 30 2 S A T C | If $f(x) = \tan(2x)$, then $f'(\frac{\pi}{6}) =$ | | | $f'(\pi/6) = 2\sec^2(\pi/3) = 2(2/15)^2 = 8/3$ | | | If $f(x) = \sin(e^{-x})$, then $f'(x) =$ | | | $f'(x) = -\cos(e^{-x})$ | | 13. Derivative of all 6 trig | If $f(x) = \cos(x^2)$, then $f'(x) =$ | | functions | $f'(x) = -2x \sin(x^2)$ | | | $\frac{d}{dx}\cot(3x)$ $= -3\left[\cos(3x)\right]^{2}$ | | | Find the derivative of $y = 3 \sec(\pi x)$ | | | y' = 3 m sec mx tan mx | ŧ | | Find the derivative of $f(x) = \csc(5x^2)$ | | | | |---|---|--------|----------|--| | | f'(x)=-10 x csc (5x2) cot (5x2) | | | | | 14. Chain Rule | $\frac{d}{dx}\cos^{2}(x^{3})$ = 2 cos(x ³) (-sin(x ³) (3x ²)) = -6x ² cos(x ³)sin(x ³) | | | | | | 1 x | f(x) 2 | 機能 f'(x) | | | | 2 | 3 | 1 3 | | | 15. Derivative of Inverse
Function | If $f \Rightarrow (3, 1) \Rightarrow 0 \Rightarrow f^{-1} \Rightarrow (1, 3)$ If f and f^{-1} exist, are continuous and differentiable for $x > 0$, then $\frac{d}{dx}(f^{-1}(x))$ at $x = 1$ is what? $(f^{-1}(1)) = \frac{1}{f^{-1}(1)} = \frac{1}{f^{-1}(3)} = \frac{1}{2}$ | | | | | The slope of the line tangent to the curve $y^2 + (at (2,-1))$ is what? $2y \frac{\partial y}{\partial x} + 3(xy+1)^2(y+x) \frac{\partial y}{\partial x}$ $2(-1) \frac{\partial y}{\partial x} + 3(2(-1)+1)^2((-1)+2(-$ | | | | | | | $4 \frac{\partial y}{\partial x} = 3$ $\frac{\partial y}{\partial x} = \frac{3}{4}$ | | | | | | Find the derivative of $\sin^{-1}(x^2)$ 2X 1 - x^4 | |---|--| | | $-\frac{d}{dx}\cos^{-1}(3x)$ $-\frac{3}{\sqrt{1-9x^2}}$ | | 17. Derivatives of all 6 inverse | $\frac{d}{dx}\tan^{-1}(e^{x})$ $= \frac{e^{x}}{1 + e^{2x}}$ | | trig functions Simplify -1 2(42)(x) x ² -4 | Find the derivative of $\sec^{-1}(x)$ $= \frac{1}{ x \sqrt{x^2 - 1}}$ | | $\frac{2(\sqrt{2})(x)}{4} \frac{x}{14} = 2$ $= \frac{-2}{ x \sqrt{x^2-4}}$ $= \frac{-2}{ x \sqrt{x^2-4}}$ | Find the derivative of $\cot^{-1}(5x^2)$ $-\frac{10 \times 1}{1 + 25 \times 4}$ | | | $= -\frac{1}{2 x/2 \sqrt{4x^2-1}} = -2$ | | 18. Derivative of exponential | If $f(x) = \frac{e^{2x}}{2x}$, then $f'(x) = \frac{2 \times (2e^{2x}) - e^{2x}}{4x^2}$ | | ÷ | $= \frac{4 \times e^{2x} - 2e^{2x}}{4 \times^2} = \frac{2 \times e^{2x} - e^{2x}}{2 \times^2}$ | $=\frac{e^{2x}(2x-1)}{2x^2}$ | | , | _ | |-------------------------------|--|---------------| | | If $f(x) = (x-1)^{\frac{3}{2}} + \frac{e^{x-2}}{2}$, then $f'(2) =$ | | | | $f'(x) = \frac{3}{2}(x-1)^{\nu_2} + \frac{1}{2}e^{x-2}$ | | | | $f'(2) = \frac{3}{2} + \frac{1}{2}e^{\circ} = \frac{3}{2} + \frac{1}{2} = 2$ | | | | If $f(x) = x^2 + 2x$, then $\frac{d}{dx}(f(\ln x)) =$ | | | | $f(\ln x) = (\ln x)^2 + 2\ln x$ | | | | $f'(\ln x) = \frac{2 \ln x}{x} + \frac{2}{x} = \frac{2 \ln x + 2}{x}$ | | | 19. Derivative of logarithmic | If $f(x) = (\ln x)^2$, then $f''(\sqrt{e}) = $ $f''(x) = \frac{x(2/x) - 2 \ln x}{x^2}$ | | | | £(x) = 510x | | | | × = 2-2\n × | | | | f"(ve) = 2 - 21nve | 2-2(1/2 | | 20. L'hospital's Rule | Functions f , g , and h are twice differentiable functions with $g(2) = h(2) = 4$. The line $y = 4 + \frac{2}{3}(x - 2)$ is tangent to both the graph of g at $x = 2$ and the graph of h at $x = 2$. The function h satisfies $h(x) = \frac{x^2 - 4}{1 - (f(x))^3}$ for $x \neq 2$. It is known that $\lim_{x \to 2} h(x)$ can be evaluated using L'hospital's Rule. Use $\lim_{x \to 2} h(x)$ to find $f(2)$ and $f'(2)$. Show the work that leads to your answers. $\lim_{x \to 2} 1 - (f(x))^3 = 0$ $h(2) = \lim_{x \to 2} \frac{x^2 - 4}{1 - (f(x))^3}$ $h(2) = \lim_{x \to 2} \frac{x^2 - 4}{1 - (f(x))^3}$ | 2-2(1/2)
= | | | $f(2) = 1$ $x \Rightarrow 2$ $-3(f(x))^{2} f'(x)$ | | | | n(2) = 4 so | | | | $11m \frac{2x}{x+2} - 3(f(x))^2 f'(x) = 4$ | | | | $\frac{4}{-3(f(z))^2 f'(z)} = 4$ | | | | 4 = - 12 | | f'(2) = -12 $f'(2) = -\frac{1}{3}$ | | x | f(x) | f'(x) | g(x) | g'(x) | |------------------------------|----|------|-------|------|-------| | | -1 | 6 | 5 | 3 | -2 | | | 1 | 3 | -3 | -1 | 2 | | 21. Derivatives from a table | 3 | 1 | -2 | 2 | 3 | | | | | | | | The table above gives values of f, f', g, g' at selected values of x. If h(x) = f(g(x)), then h'(1) = $$h'(x) = f'(g(x))g'(x)$$ $$= f'(-1)(2)$$ = 5(2) = 10