Big Idea \#3 Application of Derivatives

Concept	Question
1. Velocity	A particle moves along the x-axis so that its position at time t is given by $x(t)=t^{2}-6 t+5$. For what value of t is the velocity of the particle zero?
	What is the maximum acceleration attained on the interval $0 \leq t \leq 3$ by the particle whose velocity is given by $v(t)=t^{3}-3 t^{2}+12 t+4 ?$
3. Speed	(Calc Active) A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$. a. Find all times t in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 . b. Is the speed of the particle increasing or decreasing at time $t=4$? Give a reason for your answer.

4. When a particle changes direction	(Calc Active) A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$. Find all times t in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer.
5. Absolute Extrema	 The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3, x=5$. The areas of the regions between the graph of f^{\prime} and the x -axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$. a. Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.

	 The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the interval $[-3,4]$. The graph of f^{\prime} has horizontal tangents at $x=-1, x=1$, and $x=3$. The areas of the regions bounded by the x-axis and the graph of f^{\prime} on the intervals $[-2,1]$ and $[1,4]$ are 9 and 12, respectively. a. Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.
6. Local Extrema	

Inflection	The figure above shows the graph of f^{\prime}, the derivative of a a twice-differentiable function f, on the interval $[-3,4]$. The graph of f^{\prime} has horizontal tangents at $x=-1, x=1$, and $x=3$. The areas of the regions bounded by the $x-$ axis and the graph of f^{\prime} on the intervals [-2,1] and [1, 4] are 9 and 12, respectively. a. Find the $x-\operatorname{coordinates~for~all~points~of~inflection~for~the~}$ graph of f. Give a reason for your answer.
12. Second	
Derivative Test	

	A gardener wants to make a rectangular enclosure using a wall as one side and 120 m of fencing for the other three sides. Express the area in terms of x, and find the value of x that gives the greatest area.
13. Optimization *Open Box *Area of a field and fencing	A manufacturer wants to design an open box having a square base and a surface area of 108 square inches. What dimensions will produce a box with maximum volume?

14. Linear Approximation *using a tangent line to approximate a function value	(Calc Active) Grass clippings are placed in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by $A(t)=6.687(0.931)^{t}$, where $A(t)$ is measured in pounds and t is measured in days. a. For $t>30, L(t)$, the linear approximation to A at $t=30$, is a better model for the amount of grass clippings remaining in the bin. Use $L(t)$ to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.
15. Related Rates *Similar Triangles (lamp post) *Sliding Ladder *Cone of water with a leak	In the triangle shown above, if θ increases at a constant rate of 3 radians per minutes, at what rate is x increasing in units per minute when $x=3$ units.

	Water is draining from a right conical tank with height 12 feet and diameter 8 feet into a cylindrical tank that has a base with area 400π square feet. The depth h, in feet, of the water in the conical tank is changing at the rate of $(h-12)$ feet per minute. (The volume V of a cone with radius r and height h is $\left.V=\frac{1}{3} \pi r^{2} h\right)$ a. Write an expression for the volume of water in the conical tank as a function of h.
b. At what rate is the volume of water in the conical tank	
changing when $h=3 ?$	

