Big Idea #3 Application of Derivatives

Concept	Question					
1. Velocity	A particle moves along the x – axis so that its position at time t is given by $x(t) = t^2 - 6t + 5$. For what value of t is the velocity of the particle zero?					
2 Acceleration	What is the maximum acceleration attained on the interval $0 \le t \le 3$ by the particle whose velocity is given by $v(t) = t^3 - 3t^2 + 12t + 4$?					
3. Speed	 (Calc Active) A particle moves along a straight line. For 0 ≤ t ≤ 5, the velocity of the particle is given by v(t) =- 2 + (t² + 3t)^{6/5} - t³, and the position of the particle is given by s(t). It is known that s(0) = 10. a. Find all times t in the interval 2 ≤ t ≤ 4 for which the speed of the particle is 2. b. Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer. 					

	8	x	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < <i>x</i> < 3	3	
		f(x)	12	Positive	8	Positive	2	Positive	7	
		f'(x)	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$	
	2	g(x)	-1	Negative	0	Positive	3	Positive	1	
		g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2	
7. Mean Value Theorem	numbers in the tab a. Ex	x. Va	alues ove. why	iable funct s of <i>f</i> , <i>f</i> ', <i>g</i> there mus 0.	, ar	nd g' for v	ario	ous value	es are	e given
8. Function Increasing or Decreasing				of <i>x</i> for w + 7 is incr			ion .	f define	d by	
9. First Derivative Test	For what relative r			does the	func	tion $f(x)$	= (x	- 2)(x -	3) ² h	ave a

13. Optimization	A gardener wants to make a rectangular enclosure using a wall as one side and 120 m of fencing for the other three sides. Express the area in terms of <i>x</i> , and find the value of <i>x</i> that gives the greatest area.						
*Open Box *Area of a field and fencing	A manufacturer wants to design an open box having a square base and a surface area of 108 square inches. What dimensions will produce a box with maximum volume?						

14. Linear Approximation *using a tangent line to approximate a function value	(Calc Active) Grass clippings are placed in a bin, where they decompose. For $0 \le t \le 30$, the amount of grass clippings remaining in the bin is modeled by $A(t) = 6.687(0.931)^t$, where $A(t)$ is measured in pounds and t is measured in days. a. For $t > 30$, $L(t)$, the linear approximation to A at $t = 30$, is a better model for the amount of grass clippings remaining in the bin. Use $L(t)$ to predict the time at which there will be 0.5 pound of grass clippings remaining in the bin. Show the work that leads to your answer.
15. Related Rates *Similar Triangles (lamp post) *Sliding Ladder *Cone of water with a leak	In the triangle shown above, if θ increases at a constant rate of 3 radians per minutes, at what rate is <i>x</i> increasing in units per minute when <i>x</i> = 3 units.

