Big Idea \#4 Integral and Accumulation

Concept	Question
1. Left Riemann Sum	Find the area under the curve $y=\sqrt{1-x^{2}}$ from 0 to 1 using a LRAM with 5 rectangles.
2. Right Riemann Sum	Find the area under the curve $y=\sqrt{1-x^{2}}$ from 0 to 1 using a RRAM with 5 rectangles.
3. Midpoint Riemann Sum	Find the area under the curve $y=\sqrt{1-x^{2}}$ from 0 to 1 using a MRAM with 4 rectangles.
4. Trapezoidal Sum	x -5 -3 0 1 5 $f(x)$ 10 7 5 8 11 Given the values for $f(x)$ on the table above, approximate the area under the graph of $f(x)$ from $x=-5$ to $x=5$ using four subintervals and a Trapezoidal approximation.

5. Properties of Integrals	Given $\int_{0}^{5} f(x) d x=10$ and $\int_{5}^{7} f(x) d x=3$, find a) $\int_{0}^{7} f(x) d x$ b) $\int_{5}^{0} f(x) d x$ c) $\int_{5}^{5} f(x) d x$ d) $\int_{0}^{5} 3 f(x) d x$
6. Calculating Integrals Using Geometry	Find the following: a. $\int_{-2}^{0} \sqrt{4-x^{2}} d x$ b. $\int_{-5}^{0}\|x+4\| d x$
7. Basic Antiderivative	$\int \frac{1}{3} x^{4} d x$
8. Trig Antiderivative	$\begin{array}{ll} \int \cos x d x & \int \sec x \tan x d x \\ \int \sin x d x & \int \csc ^{2} x d x \\ \int \sec ^{2} x d x & \int \csc x \cot x d x \end{array}$
9. Inverse Trig Antiderivative	$\int \frac{1}{x^{2}+1} d x \quad \int \frac{1}{\sqrt{1-x^{2}}} d x \quad \int \frac{1}{\|x\| \sqrt{x^{2}-1}} d x$
10. Fundamental Theorem of Calculus Part 1	Find $\frac{d}{d x} \int_{2}^{x^{2}} \cos (t) d t$

11. Fundamental Theorem of Calculus Part 2	Let f be a function defined on the closed interval $-5 \leq x \leq 5$ with $f(1)=3$. The graph of f^{\prime} the derivative of f, consists of two semicircles and two line segments, as shown below. Find the absolute minimum value of $f(x)$ over the closed interval $-5 \leq x \leq 5$. Explain your reasoning.
12. Average Mean Value	Find the average value of $f(x)=x^{2}+1$ from -1 to 3 .
13. U-sub	$\int_{0}^{\pi} \cos \sqrt{\sin x} d x$
14. Slope Field	Shown above is the slope field for which of the following differential equations? (A) $\frac{d y}{d x}=1+x$ (B) $\frac{d y}{d x}=x^{2}$ (C) $\frac{d y}{d x}=x+y$ (D) $\frac{d y}{d x}=\frac{x}{y}$ (E) $\frac{d y}{d x}=\ln y$

17. Area Between Curves \quad\begin{tabular}{l}
Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y=\ln x$ and $y=5-x$, as

shown in the figure above.

(a) Find the area of R.

18. Volume \rightarrow Cross Sections

Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y=\ln x$
shown in the figure above.
(b) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-xis is a square
Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.

\hline
\end{tabular}

19. Volume \rightarrow Disks
