Big Idea #4 Integral and Accumulation

Concept	Question			
1. Left Riemann Sum	Find the area under the curve $y = \sqrt{1 - x^2}$ from 0 to 1 using a LRAM with 5 rectangles. A $\approx 1/5$ ($y(0) + y(1/5) + y(1/5) + y(1/5)$) = 0.8593			
2. Right Riemann Sum	Find the area under the curve $y = \sqrt{1-x^2}$ from 0 to 1 using a RRAM with 5 rectangles. A $\approx \frac{1}{5}(y(\sqrt{3}) + y(2/5) + y(3/5) + y(4/5) + y(1))$ = 0.6593			
3. Midpoint Riemann Sum	Find the area under the curve $y = \sqrt{1-x^2}$ from 0 to 1 using a MRAM with 4 rectangles. Which with $= \sqrt{4}$ Intervals: $\begin{bmatrix} 0, \sqrt{4} \end{bmatrix} \begin{bmatrix} \sqrt{4} & \sqrt{4} \\ \sqrt{8} \end{bmatrix} \begin{bmatrix} 3/4, \sqrt{4} \end{bmatrix} \begin{bmatrix} 3/4, \sqrt{4} \\ \sqrt{8} \end{bmatrix} \begin{bmatrix} 3/8 \\ 3/8 \end{bmatrix} \begin{bmatrix} 3/4, \sqrt{4} \\ 3/8 \end{bmatrix} \begin{bmatrix} 3/4, \sqrt{4} \\ 3/8 \end{bmatrix} \begin{bmatrix} 3/4, \sqrt{4} \\ 3/8 \end{bmatrix}$ A $\approx \sqrt{4} \left(\sqrt{8}(\sqrt{8}) + \sqrt{8}(3/8) + \sqrt{5}(8) + \sqrt{5}(8) + \sqrt{5}(8) \right)$ $= 0.7959$			
4. Trapezoidal Sum	Given the values for $f(x)$ on the table above, approximate the area under the graph of $f(x)$ from $x=-5$ to $x=5$ using four subintervals and a Trapezoidal approximation. $A \approx \frac{1}{2} (2) (10+7) + \frac{1}{2} (3) (7+5) + \frac{1}{2} (1) (5+8) + \frac{1}{2} (4) (8+1) = 79.5$			

	Given $\int_0^5 f(x)dx = 10$ and $\int_5^7 f(x)dx = 3$, find		
5. Properties of Integrals	$a) \int_0^7 f(x) dx = 13$	b) $\int_{5}^{0} f(x)dx = -10$ d) $\int_{0}^{5} 3f(x)dx = 30$	
	c) $\int_{5}^{5} f(x)dx = 0$	$\int_0^5 3f(x)dx = 30$	
	Find the following: a. $\int_{-2}^{0} \sqrt{4 - x^2} dx = 11$	b. $\int_{-5}^{0} x+4 dx = 2.5$	
6. Calculating Integrals Using Geometry	$\frac{1}{2} = \frac{1}{1} \pi (2)^{2} = \pi$	b. $\int_{-5}^{0} x+4 dx = 8.5$ $= \frac{1}{2}(1)(1) + \frac{1}{2}(4)(1) + \frac{1}{2}(4)($	
	= 4T(2) = T	= 8.5	
7. Basic Antiderivative	$\int \frac{1}{3} x^4 dx$ = $\frac{1}{3} + \frac{5}{5} + C$ = $\frac{1}{15}$	x + C	
	$\int \cos x dx = \sin x + C \qquad \int \sec x \tan x dx$	= 5ec× + c	
8. Trig Antiderivative	$\int \sin x dx = -\cos x + C \int \csc^2 x dx = -\cot x + C$		
	$\int \sec^2 x dx = \tan x + C \qquad \int \csc x \cot x dx$	= - C9CX + C	
9. Inverse Trig Antiderivative	$\int_{x^{2}+1}^{1} dx = \tan^{-1}x + C \int_{\sqrt{1-x^{2}}}^{1} dx = \sin^{-1}x$	$\frac{1}{x + C} \int \frac{1}{ x \sqrt{x^2 - 1}} dx = \sec^{-1} x + C$	
10. Fundamental Theorem of Calculus Part 1	Find $\frac{d}{dx} \int_{2}^{x^2} \cos(t) dt = 2 \times \cos x^2$		

15. Differential Equations	The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t = 0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then $\frac{dB}{dt} = \frac{1}{5}(100 - B).$ Let $y = B(t)$ be the solution to the differential equation above with initial condition $B(0) = 20$. (c) Use separation of variables to find $y = B(t)$, the particular solution to the differential equation with initial condition $B(0) = 20$. $\int \frac{1}{100 - B} dB = \int \frac{1}{5} dt$ $-\ln 100 - B = \frac{1}{5} t + C$ $-\ln 100 - B = \frac{1}{5} t - \ln 80 - \frac{1}{5} t$ $\ln 100 - B = \frac{1}{5} t - \ln 80 - \frac{1}{5} t$ $\ln 100 - B = \ln 80 - \frac{1}{5} t$
16. Exponential Growth/Decay	The half-life of the radium isotope Ra-226 is approximately 1,599 years. If the initial quantity of the isotope is 38 g, what is the amount left after 1,000 years? Round your answer to two decimal places. a. 24.63 g b. 30.60 g c. 25.13 g d. 11.88 g e. 12.32 g In 1/2 = 1599 K = 24.63 1000 10/2 1599

$$\int_{1}^{2} t_{1}(x) dx = t(1) - t(-2)$$

$$f(-2) = f(1) - \int_{1}^{2} f'(x) dx$$

$$= 3 - \left[\frac{1}{2} \pi (1)^2 - \frac{1}{2} \pi (2)^2 \right]$$

$$= 3 + \frac{3}{2} \pi$$

$$f(5) = f(1) + \int_{0}^{5} f'(x) dx$$

$$= 3 + 3 - \frac{1}{2}$$

17. Area Between Curves

Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and y = 5 - x, as shown in the figure above.

(a) Find the area of R.

18. Volume → Cross Sections

Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and y = 5 - x, as shown in the figure above.

(b) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.

Write, but do not evaluate, an expression involving one
$$S = InX \qquad S_2 = 5 - X$$

$$A = (InX)^2 \qquad A_2 = (5 - X)^2$$

$$V = \begin{cases} (InX)^2 & dx + \\ (InX)$$

