Big |dea #4 Integral and Accumulation

Concept Question

Find the area under the curve y = V1 -x2 from 0 to 1 using a LRAM

with 5 rectangles. widdh = Ve
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Find the area under the curve y = V1 - x2 from 0 to 1 using a RRAM
with 5 rectangles.
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2. Right Riemann Sum
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Find the area under the curve y = V1 -x? from 0 to 1 using a MRAM
with 4 rectangles. .o Yy
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Given the values for  f{x) on the table above, approximate the area under the graph of f(x)
from x=-5 to x=5 using four subintervals and a Trapezoldal approximation.
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Let f be a function defined on the closed interval —5 < x < 5 with
f(1) = 3. The graph of f' the derivative of f, consists of two
semicircles and two line segments, as shown below. Find the
absolute minimum value of f(x) over the closed interval -5 < x < 5.

Explain your reasoning.
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14. Slope Field

Shown above is the slope field for which of the following differential equations?
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15. Differential Equations

The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its
current weight. At time ¢ = 0, when the bird is first weighed, its weight is 20 grams. If B(?) is the weight of the
bird, in grams, at time ¢ days after it is first weighed, then
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Let y = B(r) be the solution to the differential equation above with initial condition B(0) = 20.

1
= 3(100 - B).

(¢) Use separation of variables to find y = B(t), the particular solution to the differential equation with initial
condition B(0) = 20.

! = \tatk
aB =
Sz 33
-\njlo-8| = =t +C

_in J1e0-20] = O+

16. Exponential Growth/Decay |
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The half-life of the radium isotope Ra-226 is ( ) 5qq/ \q)

approximately 1,599 years. If the initial quantity of
the isotope is 38 g, what is the amount left after
1,000 years? Round your answer to two decimal
places.

A hots or%\m\

L
'a = 3%e In'4
K (1599) t Ysaq
\9 = 3%e y =38e
1000 In'/
In/2 = 594K w=3Re 1399
N2 = 20,03




\wor'/\ _?Dr -+ 1| I

]
(£ 0ax = 20 - 59
-5

'
f(-2) = INQ) T &S'L&\dK
-5

2 3= [\/z T"U)z— Va "T'(?D;]
=3 - (T - z—n'>

= 2
3 + /z'rr

s
V' Rax = §D - FO)

1

s
s = $) + {£'ax
|

F(s) =3 + Vo (WD - '/,_mm_l

2+ 3-Y

1]

5.9






17. Area Between Curves
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Let R be the region in the first quadrant bounded by the x-axis and the graphsof y = Inx and y = 5—x, as
shown in the figure above.

(a) Find the area of R. nNx = 5-X
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18. Volume — Cross Sections
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Let R be the region in the first quadrant bounded by the x-axis and the graphsof y =Inx and y = 5— x, as
shown in the figure above.

(b) Region R is the base of a solid, For the solid, each cross section perpendicular to the x-axis is a square,
Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.
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