1. What is the difference between a limit and a function value?

THEOREM 1 Properties of Limits

If L, M, c, and k are real numbers and

 $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

1. Sum Rule: $\lim_{x \to c} (f(x) + g(x)) = L + M$

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: $\lim_{x \to c} (f(x) - g(x)) = L - M$

The limit of the difference of two functions is the difference of their limits.

3. Product Rule: $\lim_{x \to \infty} (f(x) \cdot g(x)) = L \cdot M$

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: $\lim_{x \to c} (k \cdot f(x)) = k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.

5. Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. *Power Rule:* If *r* and *s* are integers, $s \neq 0$, then

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number.

The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \qquad \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$
$$\lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b} \qquad \qquad \lim_{x \to 0} \frac{1 - \cos ax}{bx} = 0 \qquad \qquad \lim_{x \to 0} \frac{\tan ax}{bx} = \frac{a}{b}$$

2.
$$\lim_{x \to 5^+} \sqrt{x-5} =$$
 3. $\lim_{x \to 5^-} \sqrt{x-5} =$ 4. $\lim_{x \to 5} \sqrt{x-5} =$

5. Use the piecewise function
$$f(x) = \begin{cases} 3-x & x < -3 \\ 2x+12 & -3 \le x < 4 \\ 9 & x \ge 4 \end{cases}$$
 for the limits below:

- a. $\lim_{x \to -3^+} f(x) =$ d. $\lim_{x \to 4^-} f(x) =$ g. $\lim_{x \to 7^+} f(x) =$
- b. $\lim_{x \to 4^+} f(x) =$ e. $\lim_{x \to -3} f(x) =$ h. $\lim_{x \to -5} f(x) =$
- c. $\lim_{x \to -3^{-}} f(x) = f(x$

A function f(x) has a limit as x approaches c if and only if the right-hand and left - hand limits at c exist and are equal. $\lim_{x \to C} f(x) = L \iff \lim_{x \to C^+} f(x) = L \text{ and } \lim_{x \to C^-} f(x) = L$

- 3. Find the limits below using the graph:
- a. f(1) = d. $\lim_{x \to 2^{-}} f(x) =$
- b. $\lim_{x \to 1} f(x) =$ e. $\lim_{x \to 4} f(x) =$
- c. $\lim_{x \to 2^+} f(x) =$ f. f(4) =

Sandwich Theorem If $g(x) \le f(x) \le h(x)$ for all $x \ne c$ in some interval about c, and $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$ then $\lim_{x \to c} f(x) = L$

17. Show that $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$

Horizontal Asymptote:

The line y = b is a horizontal asymptote of the graph of a function y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$

"Rules"

1) If the denominator is a larger degree than the numerator the limit = _____

- 2) If the numerator is a larger degree than the denominator the limit = _____
- 3) If the numerator and denominator have the same degree than the limit = ______

a.
$$\lim_{x \to \infty} \frac{2x^2 + 3}{5x^2 - 7} =$$
 b. $\lim_{x \to \infty} \frac{6x}{3x^2 + 1} =$

c.
$$\lim_{x \to -\infty} \frac{4x^2}{8-3x^2} =$$
 d. $\lim_{x \to -\infty} \frac{x^2}{3x-1} =$

Vertical Asymptote:

The line x = a is a vertical asymptote of the graph of a function y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty \text{ or } \lim_{x \to a^-} f(x) = \pm \infty$

3. $\lim_{x \to 7} \frac{1}{x-7} =$

Unbounded Behavior

3) Oscillating Behavior

- 1. $\lim_{x \to 7^+} \frac{1}{x-7} =$
- 2. $\lim_{x \to 7^{-}} \frac{1}{x-7} =$ 4. $\lim_{x \to 3} \frac{2}{(x-3)^2} =$

*Exception to Oscillating Behavior

5.
$$\lim_{x \to 8} \frac{-6}{(x-8)^2} =$$

 $6. \quad \lim_{x \to \frac{\pi}{2}^+} \tan x =$

2. Find the points of continuity and the points of discontinuity of the function. Identify each type of discontinuity.

a.
$$y = \frac{x+1}{x^2 - 4x + 3}$$

Intermediate Value Theorem

A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b). In other words if y_0 is between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

2. Find each point of discontinuity for the function below. Then if there are any, determine if the discontinuities are removable.

$$f(x) = \begin{cases} -2x, & x \le 2\\ x^2 - 4x + 1, & x > 2 \end{cases},$$

3. What value should be assigned to *k* to make *f* a continuous function?

$$f(x) = \begin{cases} \frac{x^2 + 2x - 15}{x - 3}, & x \neq 3\\ k, & x = 3 \end{cases}$$

1. Find the derivative of the following:

a.
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

Average Rate of Change:

The average rate of change of *f* from x = a to x = a + h is given by the difference quotient:

$$\frac{f(a+h)-f(a)}{h}$$

Instantaneous Rate of Change:

The instantaneous rate of change of *f* with respect to *x* at *a* is the derivative of *f* at *a*

$$\lim_{x \to a} \frac{f(a+h) - f(a)}{h}$$