1973 BC 7

If
$$y = \ln(x^2 + y^2)$$
, then the value of $\frac{dy}{dx}$ at the point (1,0) is
(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) undefined

1985 AB 13

If $x^2 + xy + y^3 = 0$, then, in terms of x and y, $\frac{dy}{dx} =$

(A)
$$-\frac{2x+y}{x+3y^2}$$
 (B) $-\frac{x+3y^2}{2x+y}$ (C) $\frac{-2x}{1+3y^2}$ (D) $\frac{-2x}{x+3y^2}$ (E) $-\frac{2x+y}{x+3y^2-1}$

1993 AB 25

$$\frac{d}{dx}(2^{x}) =$$
(A) 2^{x-1} (B) $(2^{x-1})x$ (C) $(2^{x})\ln 2$ (D) $(2^{x-1})\ln 2$ (E) $\frac{2x}{\ln 2}$

1969 AB 6

(E) It cannot be determined from the information given.

1988 AB 29

The
$$\lim_{h \to 0} \frac{\tan 3(x+h) - \tan 3x}{h}$$
 is
(A) 0 (B) $3\sec^2(3x)$ (C) $\sec^2(3x)$ (D) $3\cot(3x)$ (E) nonexistent

1973 AB 36

If
$$y = e^{nx}$$
, then $\frac{d^n y}{dx^n} =$
(A) $n^n e^{nx}$ (B) $n!e^{nx}$ (C) ne^{nx} (D) $n^n e^x$ (E) $n!e^x$

2008 BC 3

The graph of the piecewise-defined function *f* is shown in the figure above. The graph has a vertical tangent line at x = -2 and horizontal tangent lines at x = -3 and x = -1. What are all values of *x*, -4 < x < 3. at which *f* is continuous but not differentiable?

- (A) x = 1
- (B) x = -2 and x = 0
- (C) x = -2 and x = 1
- (D) x = 0 and x = 1

1985 AB 3

The graph of the <u>derivative</u> of f is shown in the figure above. Which of the following could be the graph of f?

1998 AB 23

. The graph of f is shown in the figure above. Which of the following could be the graph of the derivative of f?

2008 AB/BC 6

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

Let f be the function defined above. Which of the following statements about f are true?

- I. *f* has a limit at x = 2.
- II. *f* is continuous at x = 2.
- III. *f* is differentiable at x = 2.
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III

1969 BC 20

An equation for a tangent to the graph of $y = \arcsin \frac{x}{2}$ at the origin is

- (A) x-2y=0 (B) x-y=0 (C) x=0
- (D) y = 0 (E) $\pi x 2y = 0$

1993 AB 16

The slope of the line <u>normal</u> to the graph of $y = 2 \ln(\sec x)$ at $x = \frac{\pi}{4}$ is

- (A) -2
- (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 2
- (E) nonexistent

1993 BC 17

The slope of the line tangent to the graph of ln(xy) = x at the point where x = 1 is

(A) 0 (B) 1 (C) e (D) e^2 (E) 1-e

1997 AB 11

The graph of the derivative of f is shown in the figure above. Which of the following could be the graph of f?

1998 BC 2

In the xy-plane, the graph of the parametric equations x = 5t + 2 and y = 3t, for $-3 \le t \le 3$, is a line segment with slope

(A)
$$\frac{3}{5}$$
 (B) $\frac{5}{3}$ (C) 3 (D) 5 (E) 13

1998 BC 6

The graph of y = h(x) is shown above. Which of the following could be the graph of y = h'(x)?

1998 BC 40

Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and if g(-2) = 5 and $f'(5) = -\frac{1}{2}$, then g'(-2) =

(A) 2 (B) $\frac{1}{2}$ (C) $\frac{1}{5}$ (D) $-\frac{1}{5}$ (E) -2

1985 BC 26

For
$$0 < x < \frac{\pi}{2}$$
, if $y = (\sin x)^x$, then $\frac{dy}{dx}$ is
(A) $x \ln(\sin x)$ (B) $(\sin x)^x \cot x$ (C) $x(\sin x)^{x-1}(\cos x)$
(D) $(\sin x)^x (x \cos x + \sin x)$ (E) $(\sin x)^x (x \cot x + \ln(\sin x))$

1. Find the values of *a* and *b* that will make f(x) differentiable at x = -1.

$$f(x) = \begin{cases} ax^2 + bx - 3, & x < -1\\ 2x^3 - 5, & x \ge -1 \end{cases}$$

2. Write an equation for the tangent line to $y = x \cos x$ at $x = \frac{\pi}{2}$.

3. Write an equation for the **normal** line at x = 0 to $y = 2 + e^{-2x}$.

4. If the line y = 4x - 18 is tangent to the curve $y = ax^2 + bx$ at the point (3,-6), then find *a* and *b*.

5. Find $y = ax^2 + bx + c$ such that f(0) = 5, f'(0) = 6, and f''(0) = -3.

- 6. The position (in meters) of an object at any time *t* (in minutes) is given by the function $s(t) = 3t^2 \cos 2t$.
 - a. Find the velocity of the object at time $t = \pi$ using appropriate units.

b. Find the acceleration of the object at time $t = \pi$ using appropriate units.

7. Use the table of values below representing the position of an object at the given times.

t (sec)	1	2	3	4	5
<i>s</i> (<i>t</i>) (cm)	2.3	5.6	6.2	6.4	4.8

a. Find the average velocity of the object between times t = 1 and t = 4. Show your computation.

b. Find an estimate for the velocity of the object at t = 3.

8. Find $\frac{d^2y}{dx^2}$, for the function $y = 2x^4 - 5\sqrt{x}$.

9. Find
$$\lim_{h \to 0} \frac{\cos(\frac{\pi}{3} + h) - \frac{1}{2}}{h}$$

10. Find
$$\lim_{h \to 0} \frac{3(2+h)^3 - 24}{h}$$

x	f(x)	f'(x)	g(x)	g'(x)
1	2	$\frac{1}{3}$	-2	-3
2	3	$\frac{1}{2}$	4	0
3	1	-2	5	-1

11. Use the table below to find the specified derivatives.

a. If
$$h(x) = f(x) * g(x)$$
, find
 $h'(2)$

d. If
$$h(x) = \frac{2f(x)}{x^3}$$
, find $h'(2)$

b. If
$$h(x) = \frac{f(x)}{g(x)}$$
, find $h'(3)$

e. If h(x) = g(f(x)), find h'(3)

c. If
$$h(x) = x^3 * g(x)$$
, find $h'(1)$
f. If $h(x) = f(x^2)$, find $h'(1)$

g. If h(x) is the inverse of f(x), find h'(1)

12. Find the 78^{th} derivative of $f(x) = 3^x$

13. Find the 95th derivative of $f(x) = \sin(3x)$

14. Find the derivative of the function $f(x) = \tan^{-1}(3x^2)$

15. Find the derivative of $f(x) = \sin^{-1}(\cos(3x))$

16. Find the derivative of the inverse of the function $f(x) = 3x^5 - 2x^3 - 4$ at x = -5.

17. Find the derivative of the function $y = x^{\cos x}$.

18. Which of the following are asymptotes of 2y + xy - x + 3 = 0

I. x = 3II. x = -2III. y = 1a. I only b. III only c. I and II only d. II and III only e. I, II, and III