The derivative of the function f with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists

Alternative Derivative (derivative at a point)
The derivative of the function f at the point $x=a$ is the limit

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exists.

a. $\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}$
b. $\lim _{h \rightarrow 0} \frac{5(x+h)^{4}-5 x^{4}}{h}$
d. $\lim _{h \rightarrow 0} \frac{(3+h)^{4}-81}{h}$
e. $\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec x}{h}$
C. $\lim _{h \rightarrow 0} \frac{10(2+h)^{3}-80}{h}$
f. $\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}+h\right)-\frac{1}{2}}{h}$

(a)

(b)

1. Consider the graph of $f(x)$ below to answer the following questions:
a. Are there any x values for which the derivative does not exist?
b. Are there any x values for which
 $f^{\prime}(x)=0$?
c. This particular function f has an interval on which its derivative $f^{\prime}(x)$ is constant. What is this interval? What does the derivative function look like there? Estimate the slope of $f(x)$ on that interval.
d. On which interval or intervals is $f^{\prime}(x)$ positive?
e. On which interval or intervals is $f^{\prime}(x)$ negative?
f. Sketch a graph of the derivative of the function.

2. Below is a graph of a derivative $g^{\prime}(x)$. Assume this is the entire graph of $g^{\prime}(x)$. Use the graph to answer the following questions about the original function $g(x)$.

a. On which interval(s) is the original function $g(x)$ increasing?
b. On which interval(s) is the original function $g(x)$ decreasing?
c. Now suppose that $g(0)=0$. Is the function $g(x)$ ever positive? That is, is there any x values such that $g(x) \geq 0$? How do you know?
3. Graph the derivative of the function below:
a.

b.

c.

Where $f^{\prime}(a)$ Does Not Exist

1. CORNER:

2. CUSP:

3. VERTICAL TANGENT

4. DISCONTINUITY

5. For each function, $f(x)$, determine whether the function is continuous and/or differentiable.
a. $f(x)= \begin{cases}x^{2}, & x \geq 0 \\ x, & x<0\end{cases}$
b. $\quad f(x)= \begin{cases}4-x^{2}, & x<1 \\ 2 x+2, & x \geq 1\end{cases}$
6. Find the values of a and b that make the function below differentiable.

$$
f(x)=\left\{\begin{array}{l}
a x^{2}+10, \quad x \geq 2 \\
x^{2}-6 x+b, x<2
\end{array}\right.
$$

THEOREM 1 Differentiability Implies Continuity

If f has a derivative at $x=a$, then f is continuous at $x=a$.
*****Not an If And Only If Statement*******

$$
\text { Constant Rule: } \frac{d}{d x}(c)=0
$$

Constant Multiple Rule: $\frac{d}{d x}[c f(x)]=c f^{\prime}(x)$

$$
\begin{aligned}
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x
\end{aligned}
$$

Power Rule: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$

Sum Rule: $\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)$ $\frac{d}{d x}(\tan x)=\sec ^{2} x$
Difference Rule: $\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)$
$\frac{d}{d x}(\csc x)=-\csc x \cot x$
Product Rule: $\frac{d}{d x}[f(x) g(x)]=f(x) \mathrm{g}^{\prime}(x)+g(x) f^{\prime}(x)$
$\frac{d}{d x}(\sec x)=\sec x \tan x$
Quotient Rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
$\frac{d}{d x}(\cot x)=-\csc ^{2} x$
6.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	2	-1	1	2
2	1	$\frac{1}{2}$	3	0
3	3	2	1	-2

Given $h(x)=f(x) \cdot g(x)$, find $h^{\prime}(3)$
7.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	-1	2	-1
2	2	-1	1	0
3	1	-1	2	1

Given $h(x)=\frac{f(x)}{g(x)}$, find $h^{\prime}(3)$

DEFINITION Acceleration

Acceleration is the derivative of velocity with respect to time. If a body's velocity at time t is $v(t)=d s / d t$, then the body's acceleration at time t is

$$
a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} .
$$

DEFINITION Speed

Speed is the absolute value of velocity.

$$
\text { Speed }=|v(t)|=\left|\frac{d s}{d t}\right|
$$

CALCULUS AB

 SECTION II, Part ATime- $\mathbf{3 0}$ minutes

Number of problems-2

A graphing calculator is required for these problems.

1. For $0 \leq t \leq 6$, a particle is moving along the x-axis. The particle's position, $x(t)$, is not explicitly given. The velocity of the particle is given by $v(t)=2 \sin \left(e^{t / 4}\right)+1$. The acceleration of the particle is given by $a(t)=\frac{1}{2} e^{t / 4} \cos \left(e^{t / 4}\right)$ and $x(0)=2$.
(a) Is the speed of the particle increasing or decreasing at time $t=5.5$? Give a reason for your answer.
(b) Find the average velocity of the particle for the time period $0 \leq t \leq 6$.
(c) Find the total distance traveled by the particle from time $t=0$ to $t=6$.
(d) For $0 \leq t \leq 6$, the particle changes direction exactly once. Find the position of the particle at that time.
