The derivative of the function f with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided the limit exists

(b)

(a)

- 1. Consider the graph of f(x) below to answer the following questions:
 - a. Are there any *x* values for which the derivative does not exist?

- b. Are there any *x* values for which f'(x) = 0?
- c. This particular function f has an interval on which its derivative f'(x) is constant. What is this interval? What does the derivative function look like there? Estimate the slope of f(x) on that interval.
- d. On which interval or intervals is f'(x) positive?
- e. On which interval or intervals is f'(x) negative?
- f. Sketch a graph of the derivative of the function.

2. Below is a graph of a derivative g'(x). Assume this is the entire graph of g'(x). Use the graph to answer the following questions about the original function g(x).

- a. On which interval(s) is the original function g(x) increasing?
- b. On which interval(s) is the original function g(x) decreasing?
- c. Now suppose that g(0) = 0. Is the function g(x) ever positive? That is, is there any x values such that $g(x) \ge 0$? How do you know?

- 3. Graph the derivative of the function below:
 - a.

Where f'(a) Does Not Exist

1. CORNER:

2. CUSP:

3. VERTICAL TANGENT

4. DISCONTINUITY

4. For each function, f(x), determine whether the function is continuous and/or differentiable.

a.
$$f(x) = \begin{cases} x^2, & x \ge 0\\ x, & x < 0 \end{cases}$$

b.
$$f(x) = \begin{cases} 4 - x^2, & x < 1\\ 2x + 2, & x \ge 1 \end{cases}$$

5. Find the values of *a* and *b* that make the function below differentiable.

$$f(x) = \begin{cases} ax^2 + 10, & x \ge 2\\ x^2 - 6x + b, x < 2 \end{cases}$$

THEOREM 1 Differentiability Implies Continuity

If f has a derivative at x = a, then f is continuous at x = a.

*****Not an If And Only If Statement*****

Constant Rule: $\frac{d}{dx}(c) = 0$ Constant Multiple Rule: $\frac{d}{dx}[cf(x)] = cf'(x)$ Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$ Sum Rule: $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$ Difference Rule: $\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$ Product Rule: $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$ Quotient Rule: $\frac{d}{dx}[\frac{f(x)}{g(x)}] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$ $\frac{d}{dx}(\cot x) = -\csc^2 x$

6.

x	f(x)	f'(x)	g(x)	g'(x)
1	2	-1	1	2
2	1	$\frac{1}{2}$	3	0
3	3	2	1	-2

Given
$$h(x) = f(x) \cdot g(x)$$
, find $h'(3)$

7.

x	f(x)	f'(x)	g(x)	g'(x)
1	3	-1	2	-1
2	2	-1	1	0
3	1	-1	2	1

Given
$$h(x) = \frac{f(x)}{g(x)}$$
, find $h'(3)$

Chapter 3 Notes BC Calculus

DEFINITION Instantaneous Velocity The (instantaneous) velocity is the derivative of the position function s = f(t) with respect to time. At time t the velocity is ds = -s(t+1, k) - s(t)

 $v(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}.$

DEFINITION Acceleration

Acceleration is the derivative of velocity with respect to time. If a body's velocity at time *t* is v(t) = ds/dt, then the body's acceleration at time *t* is $a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}.$

DEFINITION Speed

Speed is the absolute value of velocity.

Speed = $|v(t)| = \left|\frac{ds}{dt}\right|$

CALCULUS AB SECTION II, Part A Time—30 minutes Number of problems—2

A graphing calculator is required for these problems.

- 1. For $0 \le t \le 6$, a particle is moving along the x-axis. The particle's position, x(t), is not explicitly given. The velocity of the particle is given by $v(t) = 2\sin(e^{t/4}) + 1$. The acceleration of the particle is given by
 - $a(t) = \frac{1}{2}e^{t/4}\cos(e^{t/4})$ and x(0) = 2.
 - (a) Is the speed of the particle increasing or decreasing at time t = 5.5? Give a reason for your answer.
 - (b) Find the average velocity of the particle for the time period $0 \le t \le 6$.
 - (c) Find the total distance traveled by the particle from time t = 0 to t = 6.
 - (d) For $0 \le t \le 6$, the particle changes direction exactly once. Find the position of the particle at that time.