The derivative of the function f with respect to the variable xis the function f' whose

value at x is
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Alternative Derivative (derivative at a point)
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The derivative of the function f at the point x=a
is the limit
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1. Consider the graph of f(x) below to answer the

following questions:

a.

Are there any x values for which the
derivative does not exist?

x=-2, 2

Are there any x values for which fi(x) = 0?
% =0

This particular function f has an interval on which its derivative fi(x) is
constant. What is this interval? What does the derivative function look like
there? Estimate the slope of f(x) on that interval.

2 =-{-2
-4-(-2)
horizotal line ot Y= -2 .y
On which interval or intervals is f'(x) positive? B /. -2
-2, )L (2,4 -~ -2

On which interval or intervals is f'(x) negative?

(-4, =2)V(o,2)

Sketch a graph of the derivative of the function.




2. Belowis a graph of a derivative g’(x). Assume this is the entire graph of g'(x). Use

the graph to answer the following questions about the original function g(x).
1

| ¢(z)

a. On which interval(s) is the original function g(x) increasing?
2
(‘3/ = ‘/z)U( /Z/LD
b. On which interval(s) is the original function g(x) decreasing?

(-4, =V (Y2, 72)

c. Now suppose that g(0) = 0. Is the function g(x) ever positive? That is, is
there any x values such that g(x) > 0? How do you know?
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3. Graph the derivative of the function below: P% oot (o, 0
a.
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One-Sided Derivatives
A function y = f(x) is differentiahle on & closed interval [a, b] if it has a derivative at
every interior point of the interval, and if the limits

im L@ "}l =@ (he right-hand derivative at o}
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exist at the endpaints. In the right-hand derivative,  is positive and @ + kapproaches a from

Where f'(a) Does Not Exist

A function will not have a derivative at a point P(a, f(a)) where the slopes of the secant lines,

f(x)-f(a)

v_g  failto approach a limit as x approaches a.
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1. For each function, f(x), determine whether the function is continuous and/or
differentiable.
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2. Find the values of a and b that make the function below differentiable.
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THEOREM 1 Differentlability implies Continuity
If £ has a derivative &t x = a, thea f is continuous at x = a.

**%**%Not an If And Only If Statement***s* +Hhan V\ O‘C ‘ X\

THEOREM 2 Intermediate Value Theorem for Derivatives

1f a and b are any two points in an interval on which £ is differentiable, then f* takes
on every valne between f'(a) and f'(b).




Constant Rule: £ (c)= 0

Constant Multiple Rule: %[cf(x)] = cf'(x)

Power Rule: %(x") = nx™)

Sum Rule: %[f(xﬁ- 2] = F W+ 20
Difference Rule: .i.—[ f)-g) = £ ) -g'@)
Product Rule: L f(x)g(x)] = S()g(x)+ g()S (x)

Quotient Rule;
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d , .
—{sinx)=cosx

dx

d .
—(cosx)= —sin x

dx

-i-(tan x)=sec’x

dx

d
—{(csc x)= ~cscxcotx

dx

d
-‘—{—;(sec x)=secxtan x

—(cotx)= —esc’ x

dx

Given h(x) = f(x) - g{x), find #'(3)
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Given h(x) = iﬁ)—, find h'(3)
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DEFINITION Instantaneous Velocity DEFINTION Speed
The (instantaneons) is the desivative of the position function s = F(1) . ¥
lemmm‘jﬁ‘fu  dan s g Bpeed is the absotute vahue of velocity. p
spee = bl = | 5]
ds . + A1) = f(2 dt
v{f) = e Alf'-';'o ﬁL_Alt_ZQ
DEFINITION Acceleration
is the derivative of velocity with respect to time. If a body’s velosity
sttime ¢ it v(#) = de/df, then the body’s scoeleration at time ¢i8
dv _ d%
a(t) = F = o
CALCULUS AB
SECTIONIL Part A

Time—30 minutes
Number of problems—2

A graphing calculator is required for these problems.

1. For 0 £ t £ 6, a particle is moving along the x-axis. The particle’s position, x(5), is not explicifly given.
The velocity of the particle is given by v{r) = 2sin (é’ / 4) + 1. The acceleration of the particle is given by

alr) = 3.¢'/* cos(e'!4) and x(0) = 2.

(a) Is the speed of the particle increasing or decreasing at time 7 = 5.5 7 Give a reason for your answer,

(b) Find the average velocity of the particle for the time period 0 < 7 < 6.
(¢) Find the total distance traveled by the particle from time 7 = 0 to £ = 6.
(d) For 0 £ 1 £ 6, the particle changes direction exactly once. Find the position of the particle at that time.

a) Vv(85) =-0.483

al(5.8) = - \.3585
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