1. Find the derivative of the following:

a.
$$y = 2x^4 \sqrt{x^2 - 5}$$

BC Topic!

Finding dy/dx Parametrically

If all three derivatives exist and $dx/dt \neq 0$,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}.$$
(3)

Examples:

- 1. Find the line tangent to the right-hand hyperbola branch defined parametrically by
 - $x = \sec t, y = \tan t, -\frac{\pi}{2} < t < \frac{\pi}{2}$ at the point ($\sqrt{2}$, 1) where $t = \frac{\pi}{4}$

2. Find the equation of the line tangent to the curve defined by $x = \sin 2\pi t$, $y = \cos 2\pi t$ at the point $t = -\frac{1}{6}$.

1. Find
$$\frac{dy}{dx}$$
 of $x^2 - xy + 3y^2 = 7$

2. Given $x^2 + y^2 = 16$, find the equation of the tangent line at (3, $\sqrt{7}$).

Challenge Problems!

1. Find
$$\frac{d^2y}{dx^2}$$
 if $2x^3 - 3y^2 = 8$

Theorem 1 Derivatives of Inverse Functions	Derivation:
Let $g(x)$ be the inverse of $f(x)$.	
$g'(x) = \frac{1}{f'(g(x))}$	

1.

Let f and g be **inverse** functions.

The following table lists a few values of f, g, and f'.

x	f(x)	g(x)	f'(x)
-2	2	5	1
5	-2	-4	$-\frac{1}{2}$
g'(-2)) =		

2.

Let f and g be **inverse** functions.

The following table lists a few values of $f,\,g,\,{\rm and}\,\,g'.$

x	f(x)	g(x)	g'(x)
-3	5	4	$-\frac{1}{4}$
4	-3	2	2
f'(4)	=		

3.

Let $h(x) = 7 - x - 2x^5$ and let f be the inverse function of h. Notice that h(-1) = 10.

f'(10) =

4.

Let $g(x) = x^5 + 3x$ and let h be the inverse function of g. Notice that g(1) = 4.

h'(4) =

Derivative Rules:

Examples:

1. Find the derivative of *y* with respect to the appropriate variable.

a.
$$y = \sin^{-1}\sqrt{2t}$$

b. $y = x\sin^{-1}x + \sqrt{1 - x^2}$

1. Find the derivative of the following equations:

a.
$$y = \ln(x^3 + 3x - 2)$$
 c. $y = 3^{x+2}$

b.
$$y = e^{3x^2}$$
 d. $y = x^{\sin x}$

Chapter 4 Notes BC Calculus