Let's See What We Remember!

1. At $x=3$, the function given by $f(x)=\left\{\begin{array}{cc}x^{2}, & x<3 \\ 6 x-9, & x \geqq 3\end{array}\right.$ is
a. Undefined
b. Continuous but not differentiable
c. Differentiable but not continuous
d. Neither continuous nor differentiable
e. Both continuous and differentiable
2. For what value of k, if any, is f continuous at $x=3$? Justify your answer.

$$
f(x)= \begin{cases}\frac{2 x^{2}+5 x-3}{x^{2}+4 x+3} & \text { for } x<-3 \\ k x+\frac{1}{2} & \text { for }-3 \leq x \leq 0 \\ \frac{2^{x}}{3^{x}-1} & \text { for } x>0\end{cases}
$$

3. Let f be the function given by $f(x)=|x|$. Which of the following statements about f are true?
I. f is continuous at $x=0$.
II. f is differentiable at $x=0$.
III. f has an absolute minimum at $x=0$.
a. I only
b. II only
c. III only
d. I and III
e. II and III
4. The function f has the properties indicated in the table below. Which of the following must be true.

a	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$f(a)$
-1	4	6	4
0	-3	-3	5
1	2	2	2

a. f is continuous at $x=-1$
b. f is continuous at $x=0$
c. f is continuous at $x=1$
d. f is differentiable at $x=0$
e. f is differentiable at $x=1$
5. The graph of the function f is shown below. What are all values of x for which f has a removable discontinuity?

a. 0 only
b. 1 only
c. 0 and 2 only
d. 0,1 , and 2 only
6. Let f be the function defined by $f(x)=\frac{x^{4}-4 x^{2}}{x^{2}-4 x}$. Which of the following statements are true?
a. f has a discontinuity due to a vertical asymptote at $x=0$ and $x=4$.
b. f has a removable discontinuity at $x=0$ and a jump discontinuity at $x=4$
c. f has a removable discontinuity at $x=0$ and a discontinuity due to a vertical asymptote at $x=4$
d. f is continuous at $x=0$, and f has a discontinuity due to a vertical asymptote at $x=4$.
7. A student attempted to confirm that the function f defined by $f(x)=\frac{x^{2}+x-6}{x^{2}-7 x+10}$ is continuous at $x=2$. In which step, if any does an error first appear?

$$
\begin{aligned}
& \text { Step 1: } f(x)=\frac{x^{2}+x-6}{x^{2}-7 x+10}=\frac{(x-2)(x+3)}{(x-2)(x-5)} \\
& \text { Step 2: } \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x+3}{x-5}=\frac{2+3}{2-5}=-\frac{5}{3} \\
& \text { Step 3: } f(2)=\frac{2+3}{2-5}=-\frac{5}{3} \\
& \text { Step 4: } \lim _{x \rightarrow 2} f(x)=f(2) \text {, so } f \text { is continuous at } x=2 .
\end{aligned}
$$

a. Step 2
b. Step 3
c. Step 4
d. There is no error

