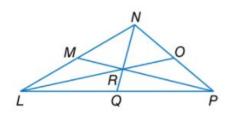
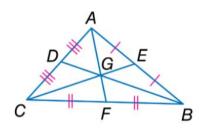
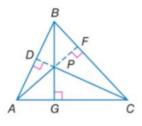

Median:


Centroid:

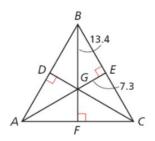
Centroid Theorem	The medians of a triangle intersect at a point called the centroid that is two thirds of the distance from each vertex to the midpoint of the opposite side	
------------------	--	--


3. In $\triangle XYZ$, YV = 12 and P is the centroid. Find YP = ? and PV = ?

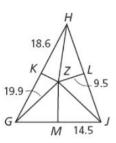
4. In $\triangle LNP$, R is the centroid and LO = 30. Find LR = ? and RO = ?



2. In $\triangle ABC \ CG = 4$. Find GE =


Altitude:

Orthocenter:



Circumcenter Theorem	The vertices of a triangle are equidistant from the circumcenter.	A MIL MIL
----------------------	---	-----------

3. G is the circumcenter of $\triangle ABC$. Find GC =



5. Z is the circumcenter of ΔGJH . Find GM =

Incenter Theorem	The incenter of a triangle is equidistant from the sides of the triangle.	A D B F C
------------------	---	-----------------------

6. *N* is the incenter of the triangle. Find ND:

7. In the figure point D is the incenter. Determine which segments are congruent to \overline{DG} .

