Midsegment: a segment that connects the midpoints of 2 sides of a triangle

Midsegment Theorem

The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long.

$$\overline{DE} \parallel \overline{BC}$$
 and $DE = \frac{1}{2}BC$

1. UW and VW are midsegments of $\triangle RST$. Find UW and RT.

$$UW = \frac{1}{2} RS$$

$$= \frac{1}{2} (12)$$

$$= \frac{1}{2} RT$$

$$= \frac{1}{2} (12)$$

$$= \frac{1}{2} RT$$

$$= \frac{1}{2} RT$$

- Use the coordinate plane below for the following questions
 - a. Find the coordinate of the midpoint on \overline{JK} .
 - b. What is the slope of the midsegment \overline{MN} ? Is it the same as the slope of \overline{JK} ?

a) Recall midpoint =
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

 $\left(\frac{-2+4}{2}, \frac{3+5}{2}\right)$
= $\left(1, 4\right)$

b)
$$m_{MN} = \frac{1}{3}$$
 $m_{JK} = \frac{1}{3}$

3. \overline{GH} , \overline{HJ} , \overline{JG} are midsegments of $\triangle DEF$. Find the following:

a.
$$\overline{JH} \parallel \overline{DF}$$

b.
$$EF = 21.2$$

f.
$$JH = 8$$

g. Find the perimeter of

$$\triangle GHJ$$