Point of Concurrency Worksheet

Give the name the point of concurrency for each of the following.

1.	Angle Bisectors of a Triangle			
2.	Medians of a Triangle			
3.	Altitudes of a Triangle			
4.	Perpendicular Bisectors of a Triangle			
Complete each of the following statements.				
5.	The <i>incenter</i> of a triangle is equidistant from the of the triangle.			
6.	The <i>circumcenter</i> of a triangle is equidistant from the of the triangle.			
7.	The <i>centroid</i> is of the distance from each vertex to the midpoint of the opposite side.			
8.	To <i>inscribe</i> a circle about a triangle, you use the			
9.	To <i>circumscribe</i> a circle about a triangle, you use the			

10. Complete the following chart. Write if the point of concurrency is *inside*, outside, or on the triangle.

	Acute ∆	Obtuse A	Right Δ
Circumcenter			
Incenter			
Centroid			
Orthocenter			

In the diagram, the perpendicular bisectors (shown with dashed segments) of $\triangle ABC$ meet at point *G*--the <u>circumcenter</u>. and are shown dashed. Find the indicated measure.

18. IF BG = (2x - 15), find x.

x = _____

In the diagram, the perpendicular bisectors (shown with dashed segments) of $\triangle MNP$ meet at point *O*—the *circumcenter*. Find the indicated measure.

Point *T* is the <u>incenter</u> of $\triangle PQR$.

- 25. If Point T is the *incenter*, then Point T is the point of concurrency of
 - the _____
- 26. ST = _____
- 27. If TU = (2x 1), find x.

x = _____

28. If $m \angle PRT = 24^\circ$, then $m \angle QRT =$ _____

29. If $m \angle RPQ = 62^\circ$, then $m \angle RPT =$ _____

Point G is the <u>centroid</u> of $\triangle ABC$, AD = 8, AG = 10, BE = 10, AC = 16 and CD = 18. Find the length of each segment.

Point S is the <u>centroid</u> of $\triangle RTW$, RS = 4, VW = 6, and TV = 9. Find the length of each segment.

Point *G* is the centroid of $\triangle ABC$. Use the given information to find the value of the variable.

45. FG = x + 8 and GA = 6x - 4

x = _____

46. If CG = 3y + 7 and CE = 6y

Is segment AB a *midsegment*, *perpendicular bisector*, *angle bisector*, *median*, *altitude*, or *none of these*?

