Rectangular Coordinates (x, y)
Polar Coordinates (r, θ)

1. Graph the following polar coordinates:
$P\left(4, \frac{5 \pi}{3}\right)$
$Q\left(3, \frac{7 \pi}{6}\right)$
$R\left(-2, \frac{5 \pi}{4}\right)$
$S\left(1,-\frac{\pi}{3}\right)$

2. Fill in the information below:

$$
\begin{array}{ll}
\sin \theta= & \text { so } y= \\
\cos \theta= & \text { so } x= \\
\tan \theta= & \\
x^{2}+y^{2}= & \text { so } r=
\end{array}
$$

3. Convert $\left(2, \frac{5 \pi}{6}\right)$ to rectangular coordinates.
4. Convert (3,-3) to polar coordinates.
5. Convert the following equations to polar form:
a. $y=4$
b. $x^{2}+y^{2}=25$

Circles

The graphs of $r=a \cos \theta$ and $r=a \sin \theta$ are circles

6. Sketch the following:
a. $r=3 \sin \theta$
b. $r=2 \cos \theta$
c. $r=-4 \cos \theta$

Limacons:

*If it were minus rather than plus then the graphs would be on the other side of the x -axis
*cosine has similar graphs but along the x -axis.
7. Sketch the following graphs:
a. $r=2+3 \sin \theta$
b. $r=4-4 \cos \theta$
c. $r=5-2 \sin \theta$

Rose Curves

$$
r=a \sin n \theta \text { or } r=a \cos n \theta
$$

If n is an even integer, then the rose will have 2 n petals.

If n is an odd integer, then the rose will have n petals.

*Easiest way to graph is to find where \sin or cos is equal to 0
8. Sketch the following graphs:
a. $r=4 \sin 3 \theta$
b. $r=2 \cos 2 \theta$
c. $r=2 \sin 5 \theta$

9. To find the slope of a tangent line to the polar graph $r=f(\theta)$, we can use the facts that $x=r \cos \theta$ and $y=r \sin \theta$, together with the product rule:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d x}}=
$$

10. Find $\frac{d y}{d x}$ and the slope of the graph of the polar curve at the given value of θ.

$$
r=3+2 \sin \theta \quad \theta=\frac{\pi}{6}
$$

