The quotient of two polynomials *P* and *Q*, with $Q \neq 0$ is a **rational expression**

Denominator of a fraction cannot be 0, the domain consists of all real numbers except those that make the denominator 0.

1. Find the domain of the rational expression
a.
$$\frac{2x-4}{x+7}$$
 C. $\frac{3}{x^2-5x-6}$
b. $\frac{9x+12}{(2x+3)(x-5)}$ d. $\frac{x^2-25}{x-5}$

 \star To determine the domain, find values of x that make the **original denominator** equal to 0 and exclude those.

2. Write each rational expression in lowest terms a. $\frac{36y^2 + 72y}{9y^2}$ C. $\frac{r^2 - r - 6}{r^2 + r - 12}$

b.
$$\frac{-8(4-y)}{(y+2)(y-4)}$$

d.
$$\frac{y^3 - 27}{y - 3}$$

$$\frac{-8(4-y)}{(y+2)(y-4)}$$

Multiplying and Dividing

For fractions $\frac{a}{b}$ and $\frac{c}{d}$ $(b \neq 0, d \neq 0)$, the following hold.

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
 and $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ $(c \neq 0)$

3. Multiply or divide, as indicated.

a.
$$\frac{2y^2}{9} \cdot \frac{27}{8y^5}$$
 d. $\frac{6r-8}{9r^2+6r-24} \div \frac{4r-12}{12r-16}$

b.
$$\frac{8r^3}{6r} \div \frac{5r^2}{9r^3}$$

c.
$$\frac{y^3 + y^2}{7} \cdot \frac{49}{y^4 + y^3}$$

Addition and Subtraction

For fractions $\frac{a}{b}$ and $\frac{c}{d}$ ($b \neq 0$, $d \neq 0$), the following hold

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}$$
 and $\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$

4. Add or subtract, as indicated:

a.
$$\frac{8}{5p} + \frac{3}{4p}$$

d.
$$\frac{p}{2p^2 - 9p - 5} - \frac{2p}{6p^2 - p - 2}$$

b. $\frac{3}{z} - \frac{x}{z^2}$

e.
$$\frac{3}{(x-1)(x+3)} + \frac{1}{(x+3)(x-4)}$$

C.
$$\frac{7}{18a^3b^2} - \frac{2}{9ab}$$

5. Simplify each complex fraction a. $\frac{2-\frac{2}{y}}{2+\frac{2}{y}}$ b. $\frac{\frac{1}{y+3}-\frac{1}{y}}{\frac{1}{y}}$ c. $\frac{\frac{6}{x^2-25}+x}{\frac{1}{x-5}}$

Homework:

Pg. 53 11, 15, 21, 27, 31, 33, 35, 37, 41, 47, 51, 57, 59, 69, 73, 75, 81

Most Difficult First:

Pg. 53 29, 45, 67, 86