The quotient of two polynomials P and Q, with $Q \neq 0$ is a rational expression

Denominator of a fraction cannot be 0 , the domain consists of all real numbers except those that make the denominator 0 .

1. Find the domain of the rational expression
a. $\frac{2 x-4}{x+7}$
c. $\frac{3}{x^{2}-5 x-6}$
b. $\frac{9 x+12}{(2 x+3)(x-5)}$
d. $\frac{x^{2}-25}{x-5}$
\star To determine the domain, find values of x that make the original denominator equal to 0 and exclude those.
2. Write each rational expression in lowest terms
a. $\frac{36 y^{2}+72 y}{9 y^{2}}$
b. $\frac{-8(4-y)}{(y+2)(y-4)}$
c. $\frac{r^{2}-r-6}{r^{2}+r-12}$
d. $\frac{y^{3}-27}{y-3}$

Multiplying and Dividing

For fractions $\frac{a}{b}$ and $\frac{c}{d}(b \neq 0, d \neq 0), \quad$ the following hold.

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \text { and } \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c} \quad(c \neq 0)
$$

3. Multiply or divide, as indicated.
a. $\frac{2 y^{2}}{9} \cdot \frac{27}{8 y^{5}}$
d. $\frac{6 r-8}{9 r^{2}+6 r-24} \div \frac{4 r-12}{12 r-16}$
b. $\frac{8 r^{3}}{6 r} \div \frac{5 r^{2}}{9 r^{3}}$

$$
\text { e. } \frac{x^{2}+2 x-15}{x^{2}+11 x+30} \cdot \frac{x^{2}+2 x-24}{x^{2}-8 x+15}
$$

c. $\quad \frac{y^{3}+y^{2}}{7} \cdot \frac{49}{y^{4}+y^{3}}$

Addition and Subtraction

For fractions $\frac{a}{b}$ and $\frac{c}{d}(b \neq 0, d \neq 0), \quad$ the following hold

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+c b}{b d} \text { and } \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}
$$

4. Add or subtract, as indicated:
a. $\frac{8}{5 p}+\frac{3}{4 p}$
d. $\frac{p}{2 p^{2}-9 p-5}-\frac{2 p}{6 p^{2}-p-2}$
b. $\frac{3}{z}-\frac{x}{z^{2}}$
e. $\frac{3}{(x-1)(x+3)}+\frac{1}{(x+3)(x-4)}$
c. $\frac{7}{18 a^{3} b^{2}}-\frac{2}{9 a b}$
5. Simplify each complex fraction
a. $\frac{2-\frac{2}{y}}{2+\frac{2}{y}}$
b. $\frac{\frac{1}{y+3}-\frac{1}{y}}{\frac{1}{y}}$
c. $\frac{\frac{6}{x^{2}-25}+x}{\frac{1}{x-5}}$

Homework:
Pg. 53
$11,15,21,27,31,33,35,37,41,47,51,57,59,69,73,75,81$
Most Difficult First:
Pg. 53
29, 45, 67, 86

