1. State the end behavior of each of the following:
a. $f(x)=5 x^{3}-2 x+9$
b. $f(x)=-x^{100}+4 x^{6}-3 x+8$
c. $f(x)=-x^{9}+x^{8}-2 x^{5}+10$
$x \rightarrow \infty f(x) \rightarrow$
$x \rightarrow \infty f(x) \rightarrow$
$x \rightarrow-\infty f(x) \rightarrow$ \qquad

$$
x \rightarrow-\infty f(x) \rightarrow
$$

\qquad
d. $f(x)=x^{8}-4 x^{2}-7 x^{15}$
e. $f(x)=(x+3)(2 x-5)(x+6)$
$x \rightarrow \infty f(x) \rightarrow$ \qquad
$x \rightarrow-\infty f(x) \rightarrow$ \qquad
$x \rightarrow \infty f(x) \rightarrow$ \qquad
$x \rightarrow-\infty f(x) \rightarrow$ \qquad
$x \rightarrow \infty f(x) \rightarrow$ \qquad $x \rightarrow-\infty f(x) \rightarrow$ \qquad
2. Graph the following functions and state the key characteristics below:
a. $f(x)=-x^{4}+x^{3}+2 x^{2}$

End Behavior: \qquad

X-intercepts: \qquad
Y-intercepts: \qquad
b. $f(x)=(x-2)(x+1)^{2}$

c. $f(x)=x^{4}-2 x^{3}+x^{2}-8 x-12$

End Behavior: \qquad

X-intercepts: \qquad
Y-intercepts: \qquad

End Behavior: \qquad

X-intercepts: \qquad

Y-intercepts: \qquad
3. Graph the following functions and state the key characteristics below:
a. $f(x)=\frac{x^{2}-4}{x-2}$

Hole(s): \qquad
Vertical Asymptote(s) EQUATION(S): \qquad
Horizontal Asymptote(s) EQUATION(S): \qquad
Slant Asymptote EQUATION(S):

X-intercepts: \qquad
Y-intercepts: \qquad
Domain: \qquad
b. $f(x)=\frac{-2}{(x+3)^{2}}$

Hole(s): \qquad
Vertical Asymptote(s) EQUATION(S): \qquad
Horizontal Asymptote(s) EQUATION(S): \qquad
Slant Asymptote EQUATION(S):

X-intercepts: \qquad
Y-intercepts: \qquad

C. $f(x)=\frac{-5}{x^{2}-2 x-3}$

Domain: \qquad

Hole(s): \qquad
Vertical Asymptote(s) EQUATION(S): \qquad

Horizontal Asymptote(s) EQUATION(S): \qquad

Slant Asymptote EQUATION(S):
\qquad
X-intercepts: \qquad

Y-intercepts: \qquad

Domain: \qquad
d. $f(x)=\frac{x^{3}+4 x^{2}-21 x}{x^{2}+4 x-21}$

e. $f(x)=\frac{x^{2}+5 x+8}{x+3}$

Hole(s): \qquad
Vertical Asymptote(s) EQUATION(S): \qquad
Horizontal Asymptote(s) EQUATION(S): \qquad
Slant Asymptote EQUATION(S):

X-intercepts: \qquad
Y-intercepts: \qquad

Domain: \qquad

Hole(s): \qquad
Vertical Asymptote(s) EQUATION(S): \qquad
Horizontal Asymptote(s) EQUATION(S): \qquad
Slant Asymptote EQUATION(S):

X-intercepts: \qquad
Y-intercepts: \qquad

Domain: \qquad
f. $f(x)=\frac{x^{2}+x-2}{(x+2)\left(x^{2}-2 x-15\right)}$

Hole(s): \qquad
Vertical Asymptote(s) EQUATION(S): \qquad
Horizontal Asymptote(s) EQUATION(S): \qquad
Slant Asymptote EQUATION(S):

X-intercepts: \qquad
Y-intercepts: \qquad
Domain: \qquad
g. $f(x)=\frac{x^{2}+3 x-4}{x}$

Hole(s): \qquad
Vertical Asymptote(s) EQUATION(S): \qquad

Horizontal Asymptote(s) EQUATION(S): \qquad
Slant Asymptote EQUATION(S):

X-intercepts: \qquad

Y-intercepts: \qquad

Domain: \qquad
4. The frequency of a vibrating string varies inversely as its length. A string 3 feet long vibrates 175 cycles per second. Find the frequency of a 5 foot string.
5. The force of the wind blowing on a vertical surface varies jointly as the area of the surface and the square of the velocity. If a wind blowing at 50 mph exerts a force of 75 pounds on a surface of $500 \mathrm{ft}^{2}$, how much force will a wind of 75 mph place on a surface of $10 \mathrm{ft}^{2}$?
6. The time required to process a shipment of goods at Wal-Mart varies directly with the number of items in the shipment and inversely with the number of workers assigned. If 15,000 items can be processed by 8 workers in 10 hours, then how long would it take 12 workers to process 20,000 items?
7. A Body Mass Index, or BMI is a measure of a person's weight relative to their height and gives an approximation of total body fat. A BMI (rounded to the nearest whole number) in low 20's is desirable. BMI varies directly as a person's weight in pounds and inversely as the square of the person's height in inches. A person who weighs 140 points and is 70 inches tall has a BMI of 20. Find the BMI of a person who weighs 165 pounds and is 71 inches tall.

