BC Calculus
Chapter 11 Take Home Problem Set

Name: M*’%Ul Date: Period:
Show all of your work. Read the directions carefully. Calculator.

1. The figure to the left shows the graph of r = 6sin0 and r =3+ 3cos 8 for
® Colc 0<6<2m
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b. Setup an expression with two or more integrals to find the area common to
both curves. Evaluate the integrals.
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c. Setup an expression with two or more-integrals to find the perimeter of the
region common to both curves. Evaluate the integrals.



2. The figure to the right shows the graph of r =8 +2cos0 for 0 <6 <m.

a. Find the area bounded by the curve and the
X-axis
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b. Find the angle(s) 0 twir reSponds to the
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point(s) on the curvé with y-coordinate 1.

c. Find an expression for g—g. Evaluate your expression for % at 6 = §. Write
a sentence interpreting your result.
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d. Find the value of 6 for 0 <6 <7 that corresponds to the point on the curve
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e. Find the slope of the point where 6 = L. Show all of your work. From [°/¢""j L odwe
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3. A particle moves in the xy-plane with position vector (z(?),y(t)) such that
x(t)= £ -6 +9t+1 and y(t) =—  + 6t +2 inthe time interval 0 <t < 5.
a. Find the velocity vector of the particle at t = 5.
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b. Isthe particle moving to the left or to the right when t = 5? Is the particle
moving up or down when t = 5? Justify your answer.
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¢. Find the equation of the tangent line to the path of the particle when ¢ = 5.
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d. Atwhat time is the particle at rest? Justify your answer.
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e. Find the acceleration vector at the time when the particle is at rest.
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f. How fastis the particle moving when t = 5?
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g. Find the total distance traveled by the particle for the time interval 0 <t <5.
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h. If the path followed by the particle was graphed, would the graph be concave
up or down at t = 5?
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The length of the path described by the parametric equations x = %ts and y= %tz , where

0<t<1,is given by ,
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The length of the path described by the parametric equations x = cos> ¢ and y =sin’¢, for 0G93
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The area of the region enclosed by the polar curve » =1—cos0 is 1973 L HO
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The area of the closed region bounded by the polar graph of » =+/3+cos8 is given by the integral 199 6¢
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