No Calculator

1.

The graph of a function f is given to the right.
(I) $\lim _{x \rightarrow 1^{-}} f(x)=2$
(II) $\lim _{x \rightarrow 1^{+}} f(x)=-1$
(III) $\lim _{x \rightarrow 0} f(x)=2$
(A) I only
(B) II only
(C) I and II
(D) III only
(E) I, II, and III

2. Let f be the function defined by $f(x)=\frac{x^{4}-4 x^{2}}{x^{2}-4 x}$. Which of the following statements are true?
a. $\quad f$ has a discontinuity due to a vertical asymptote at $x=0$ and $x=4$.
b. f has a removable discontinuity at $x=0$ and a jump discontinuity at $x=4$
c. f has a removable discontinuity at $x=0$ and a discontinuity due to a vertical asymptote at $x=4$
d. f is continuous at $x=0$, and f has a discontinuity due to a vertical asymptote at $x=4$.
3.

Define the function

$$
f(x)= \begin{cases}\frac{1-\cos x}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then
(I) f is continuous on the set $-\infty<x<\infty$.
(II) $\lim _{x \rightarrow \infty} f(x)=0$.
(III) $\lim _{x \rightarrow 0} f(x)=0$
(A) I only
(B) II only
(C) III only
(D) All are true
(E) None are true.
4.

x	0	1	2
$f(x)$	1	k	2

The function f is continuous on the closed interval $[0,2]$ and has values that are given in the table above. The equation $f(x)=\frac{1}{2}$ must have at least two solutions in the interval $[0,2]$ if $k=$?
a. 0
b. $1 / 2$
c. 1
d. 2
e. 3
5.

a	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$f(a)$
-1	4	6	4
0	-3	-3	5
1	2	2	2

The function f has the properties indicated in the table above. Which of the following must be true?
a. f is continuous at $x=-1$
b. f is continuous at $x=0$
c. f is continuous at $x=1$
d. f is differentiable at $x=0$
e. f is differentiable at $x=1$
6.

Assume that we have a continuous function g defined on the interval $[-1,3]$ such that $f(-1)=3, f(0)=\frac{1}{2}, f(2)=-2$ and $f(3)=1$. Using the Intermediate Value Theorem we may conclude that
(I) g has a zero on the interval $(-1,0)$;
(II) g has a zero on the interval $(0,2)$;
(III) g has a zero on the interval $(2,3)$;
(A) I only
(B) II only
(C) III only
(D) I and II
(E) II and III
7.

The diagram above depicts the graph of a rational function f. Judging from the graph,
(I) $\lim _{x \rightarrow-4} f(x)=+\infty=\lim _{x \rightarrow 2} f(x)$
(II) $\lim _{x \rightarrow+\infty} f(x)=+\infty=\lim _{x \rightarrow 2} f(x)$
(III) $\lim _{x \rightarrow-4^{+}} f(x)=-\infty$ and $\lim _{x \rightarrow 0} f(x)=0$
(A) I only
(B) II only
(C) III only
(D) I and II
(E) II and III
8. Compute the following limits:
(a) $\lim _{x \rightarrow 3} \frac{2 x^{2}-7 x+3}{x-3}$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$
(c) $\lim _{x \rightarrow 4} \frac{x+\sqrt{x}-6}{\sqrt{x}-2}$.
9. Let:

$$
f(x)= \begin{cases}\frac{x^{2}+x-12}{x+4} & \text { if } x>-4 \\ -x-11 & \text { if } x \leq-4\end{cases}
$$

and compute
(a) $\lim _{x \rightarrow-4^{-}} f(x)$,
(b) $\lim _{x \rightarrow-4^{+}} f(x)$,
(c) $\lim _{x \rightarrow-4} f(x)$
10. Sketch the graph of a function f that satisfies the following conditions.
(a) The domain of f is $[-5,5]$;
(b) $\lim _{x \rightarrow-2^{-}} f(x)$ exists;
(c) $\lim _{x \rightarrow-2^{-}} f(x)=f(-2)$
(d) $\lim _{x \rightarrow-2^{+}} f(x)$ exists;
(e) $\lim _{x \rightarrow-2^{-}} f(x) \neq \lim _{x \rightarrow-2^{+}} f(x)$.

11.

$$
\lim _{x \rightarrow 0} \frac{x^{5}-16 x}{x^{3}-4 x}=
$$

$$
02 c
$$

(A) -4
(B) -2
(C) 0
(D) 2
(E) 4
12.

Let $f(x)=\left\{\begin{array}{l}-2 x+6, \text { if } x<2 \\ x^{2}-1, \text { if } x \geq 2\end{array}\right.$. The $\lim _{x \rightarrow 2} f(x)$ is
(A) 3
(B) 2
(C) 10
(D) 5
(E) non-existent
13.

The graph of $f(x)=\frac{x^{2}-5 x+6}{x^{2}-4}$ has vertical asymptotes at
(A) $x=0$ only
(C) $x=2$ only
(E) $x=3$ only
(B) $x=-2$ only
(D) $x=2$ and $x=-2$
14.

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\quad 95 c-9
$$

(A) 0
(B) 1
(C) $\frac{3}{2}$
(D) 3
(E) ∞
15.

$$
\lim _{x \rightarrow \infty} \frac{3 x^{5}-4}{x-2 x^{5}}=
$$

(A) $-\frac{3}{2}$
(B) -1
(C) 0
(D) 1
(E) $\frac{3}{2}$
16.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{1-2 x^{2}}=
$$

(A) -1
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) 1
(E) non-existent
17.
'4. If $f(x)=\frac{x^{2}-4}{x^{2}-x-2}$, then which of the following is true?
(A) The lines $x=-1$ and $x=2$ are vertical asymptotes
(B) The lines $x=-2$ and $x=2$ are vertical asymptotes
(C) The line $x=1$ is the only vertical asymptote
(D) The line $y=1$ is the only vertical asymptote
(E) The line $x=-1$ is the orily vertical asymptote
18.

If $f(x)=\left\{\begin{aligned} 3 x+1, & \text { if } x<2 \\ 9, & \text { if } x=2, \\ 6 x-4, & \text { if } x>2\end{aligned}\right.$ then $\lim _{x \rightarrow 2} f(x)$ is
(A) 6
(B) 7
(C) 8
(D) 9
(E) undefined
19.

$$
\text { Let } f(x)=\left\{\begin{array}{ll}
e^{x} & -\infty<x \leq 0 \\
|x-2|+k & 0<x<\infty
\end{array} \text {. Find } k \text { so that } f\right. \text { is continuous everywhere. }
$$

A. -1
B. 0
C. $\frac{1}{2}$
D. 1
E. e
20.

The graph of function f is shown below.

Which of the following statements are true?

$$
\text { I. } \quad \lim _{x \rightarrow-3} f(x)=1
$$

II. $\lim _{x \rightarrow-2} f(x)=-3$
III. $\lim _{x \rightarrow 1} f(x)=0$
A. I only
B. II only
C. III only
D. I and II only
E. I and III only
21.

Given: $f(x)=4+\frac{1}{x-2}$. Which of the following statements is true?
A. $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$
B. $\quad \lim _{x \rightarrow 2} f(x)$ exists
C. $\quad \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)$
D. $\quad \lim _{x \rightarrow 2} f(x)=-\infty$
E. $\quad \lim _{x \rightarrow 2} f(x)=\infty$
22.

Let $h(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2}, & \text { if } x \neq 2 \\ 0 & \text {, if } x=2 .\end{array}\right.$ Which of the following statements is true?
I. The function is continuous everywhere.
II. $\lim _{x \rightarrow 2^{+}} h(x)=\lim _{x \rightarrow 2^{-}} h(x)$.
III. The graph of $h(x)$ has a vertical asymptote at $x=2$.
A. I only
B. II only
C. III only
D. II and III only
E. I and III only
23.

Let f be a continuous function on the closed interval $[-3,6]$. If $f(-3)=-1$ and $f(6)=3$, then the Intermediate Value Theorem guarantees that
(A) $f(0)=0$
(B) $f^{\prime}(c)=\frac{4}{9}$ for at least one c between -3 and 6
(C) $-1 \leq f(x) \leq 3$ for aill x between -3 and 6 .
(D) $f(c)=1$ for at least one c between -3 and 6
(E) $f(c)=0$ for at least one c between -1 and 3
24.

1) $\lim _{x \rightarrow 1^{+}} f(x)=$
2) $\lim _{x \rightarrow 1^{-}} f(x)=$
3) $\lim _{x \rightarrow 1} f(x)=$
4) $f(1)=$
5) $\lim _{x \rightarrow 2^{+}} f(x)=$
6) $\lim _{x \rightarrow 2^{-}} f(x)=$
7) $\lim _{x \rightarrow 2} f(x)=$
8) $f(2)=$
9) $\lim _{x \rightarrow-2^{+}} f(x)=$
10) $\lim _{x \rightarrow-2^{-}} f(x)=$
11) $\lim _{x \rightarrow-2} f(x)=$
12) $f(-2)=$
13) $\lim _{x \rightarrow 6^{+}} f(x)=$
14) $\lim _{x \rightarrow 6^{-}} f(x)=$
15) $\lim _{x \rightarrow 6} f(x)=$
16) $f(6)=$
17) $\lim _{x \rightarrow 8^{+}} f(x)=$
18) $\lim _{x \rightarrow 8^{-}} f(x)=$
19) $\lim _{x \rightarrow 8} f(x)=$
20) $f(8)=$
21) $\lim _{x \rightarrow-5^{+}} f(x)=$
22) $\lim _{x \rightarrow-5^{-}} f(x)=$
23) $\lim _{x \rightarrow-5} f(x)=$
24) $f(-5)=$
25) $\lim _{x \rightarrow-6^{+}} f(x)=$
26) $\lim _{x \rightarrow-6^{-}} f(x)=$
27) $\lim _{x \rightarrow-6} f(x)=$
28) $f(-6)=$
29) $\lim _{x \rightarrow-8^{+}} f(x)=$
30) $\lim _{x \rightarrow-8^{-}} f(x)=$
31) $\lim _{x \rightarrow-8} f(x)=$
32) $f(-8)=$
25. Let g and h be the function defined by $g(x)=\sin \left(\frac{\pi}{2}(x+2)\right)+3$ and $h(x)=-\frac{1}{4} x^{3}-\frac{3}{2} x^{2}-\frac{9}{4} x+3$. If f is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for $-2<x<0$, what is $\lim _{x \rightarrow-1} f(x) ?$
a. 3
b. 3.5
c. 4
d. The limit cannot be determined from the information given.
26. The graph of the function f is shown below. For which of the following values of c does $\lim _{x \rightarrow c} f(x)=1$?
a. 0 only
b. 0 and 3 only
c. -2 and 0 only
d. -2 and 3 only

Graph of f
e. $-2,0$, and 3 only

